METALLURGICAL INVESTIGATION OF A FRACTURED SECTION OF THE 20" O.D. PIPELINE AT MILEPOST 314.77 IN THE CONWAY TO CORSICANA SEGMENT OF THE PEGASUS CRUDE OIL PIPELINE

REPORT NO. 64961, REV. 1

Prepared for ExxonMobil Pipeline Company and the Pipeline and Hazardous Materials Safety Administration pursuant to Corrective Action Order CPF 4-2013-5006H

- 1.1 Brief Narrative of the Incident
- 1.2 Scope of the Investigation
- 1.3 Development of Test Protocol

2.0 BACKGROUND INFORMATION

- 2.1 Pipe Manufacturing and Coating
- 2.2 Inspection and Service History
- 2.3 Specifications
- 2.4 Items Received for Testing

3.0 METALLURGICAL EXAMINATION, TESTING, AND ANALYSIS

- 3.1 Visual and Macroscopic Observations
- 3.2 As-Received Condition of the Pipe and Coating
- 3.3 Coating Removal Process
- 3.4 Condition of the Pipe Following Coating Removal
- 3.5 Dimensional Measurements
- 3.6 Residual Stresses
- 3.7 Fractographic Examinations
- 3.8 Crack Measurements
- 3.9 Metallographic Evaluation
- 3.10 Microhardness Surveys
- 3.11 Tensile Tests
- 3.12 Charpy V-Notch Impact Tests
- 3.13 Chemical Analyses

4.0 CONCLUSION

- 4.1 Technical Causes of Failure
- 4.2 Failure Scenario

TABLES

Table 1	Out-of-Roundness Measurements/Calculations
Table 2	Wall Thickness Measurements along Fracture Surface
Table 3	Hook Crack(s) Depth
Table 4	Crack Width Estimates
Table 5	Microhardness Survey at Fractured Area
Table 6	Microhardness Survey at Fractured Area
Table 7	Microhardness Survey at Intact Area
Table 8	Tensile Test - ERW Transverse
Table 9	Tensile Test - Base Metal Transverse
Table 10	Tensile Test - Base Metal Longitudinal
Table 11	Tensile Test - Sub-sized Round Transverse
Table 12	Charpy V-notch Impact Test - ERW Transverse
Table 13	Charpy V-notch Impact Test - Heat-Affected Zone (HAZ) Transverse
Table 14	Charpy V-notch Impact Test - Base Metal Transverse
Table 15	Chemical Analysis - OES Base Metal
Table 16	Chemical Analysis - EDS Fracture Surface
Table 17	Chemical Analysis - EDS Fracture Surface
Table 18	Chemical Analysis - EDS Fracture Surface
Table 19	Chemical Analysis - EDS O.D. Corrosion
Table 20	Chemical Analysis - EDS O.D. Bitumen Coating

APPENDICES

Appendix ITest ProtocolAppendix IIChain of CustodyAppendix IIICoating Removal Photographs and DocumentsAppendix IVUT Wall Thickness ResultsAppendix VLocation of Specimen Removal

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

METALLURGICAL INVESTIGATION OF A FRACTURED SECTION OF THE 20" O.D. PIPELINE AT MILEPOST 314.77 IN THE CONWAY TO CORSICANA SEGMENT OF THE PEGASUS CRUDE OIL PIPELINE

1.0 INTRODUCTION

1.1 Brief Narrative of the Incident

On March 29, 2013 at 2:37 pm CST, a drop in pressure was detected within the Pegasus Pipeline of the Conway to Corsicana line segment by ExxonMobil Pipeline Company (EMPCo) at their Operations Control Center in Houston, Texas. The cause of the pressure drop was the rupture of a section of the pipeline at Milepost 314.77 in Mayflower, Arkansas. The operating pressure at the time of failure was estimated to be between 702 psig and 708 psig.

1.2 Scope of the Investigation

Hurst Metallurgical Research Laboratory, Inc. (HurstLab) was retained by EMPCo, with approval by the U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration (PHMSA), to provide technical support in the investigation of the failed section of the pipeline, as well as conduct and direct the required metallurgical tests to determine, if possible, the root cause of the failure, pursuant to Corrective Action Order CPF 4-2013-5006H.

The investigation of the cracked section of the pipeline conducted by HurstLab is a joint effort by various staff members of the Laboratory, which includes some of the report writing and analysis conducted by Susan Dalrymple-Ely, Materials Analyst and metallurgical tests conducted by Clint Myers, Staff Metallurgist of the Laboratory. The investigative effort made by this Laboratory also includes a review of the UT data and SEM fractographs provided by approved vendors. The investigation conducted by this Laboratory is primarily based on the tests and analyses performed in accordance with the approved test protocol, review of the available information, and research conducted by this Laboratory. We reserve the right to change, amend, or omit our opinions, as warranted, based upon any additional information or further test results that may be obtained or made available to this Laboratory.

1.3 Development of Test Protocol

On April 13, 2013, a preliminary metallurgical test protocol was development by HurstLab following the general guideline entitled "Metallurgical Laboratory Examination Protocol" dated 05/08/2007 for metallurgical failure investigation of pipeline prepared by PHMSA. Following various revisions that were made to incorporate the changes requested by PHMSA, a protocol entitled "Pegasus Line - Conway to Corsicana M.P. 314.77, Mechanical and Metallurgical Testing and Failure Analysis Protocol", referenced as Test Protocol Rev. 4, CPF No. 4-2013-5006H, Amended 4/18/13, was developed and was approved by PHMSA. A copy of the final approved protocol is presented in Appendix I.

2.0 BACKGROUND INFORMATION

- 2.1 Pipe Manufacturing and Coating
- 2.1.1 The subject section of the 20" Patoka to Corsicana #1-20" North Pipeline, the segment from Conway to Corsicana, consisted of approximately 50' long sections of 20" O.D. x 0.312" thick wall DC Electric Resistance Welded (ERW) pipe that was manufactured in 1947 and 1948 by Youngstown Sheet and Tube Company in Youngstown, Ohio. The welded pipe was manufactured from Open Hearth Steel meeting Grade B mechanical requirements.
- 2.1.2 The O.D. surface of the pipeline was coated with some type of a viscous bitumen or coal-tar coating, on top of which was a layer of somewhat harder but more brittle fibrous coating. No details concerning the coating type or process were available. The pipeline had reportedly been impressed current cathodically protected since installation, with possible anodes as well. The weight of the coated pipe was reported to be 65.71 lbf/ft.

2.2 Inspection and Service History

- 2.2.1 The subject section of pipeline was placed in service in 1948, and was buried approximately 3' below ground in native sandy clay soil. The pipeline carried crude oil from west Texas to Patoka, Illinois between 1948 and 1995. From 1995 to 2002 the line carried both west Texas crude oil and foreign crude oil (via the Gulf of Mexico) northward. In December 2002 the line was purged and idled with nitrogen. The pipeline containing the subject section of the pipe was successfully hydrostatic tested on January 24, 2006 at 1082 psig, which established a calculated MAOP of 866 psig at the failure location, based upon the Arkansas River ROV test site pressure at 1091 psig adjusted for elevation difference to the failure location. The line was then placed back in service transporting crude oil south towards the Gulf of Mexico, and remained in service up until the time of the failure.
- 2.2.2Prior to failure, the pipeline was reported to typically operate between 47°F and 78° at pressures ranging between 240 psig and 820 psig. The pressure at the time of the failure was estimated to be between 702 psig and 708 psig. The fractured segment of the pipeline was located in a cleared right-of-way at the edge of a subdivision. No trees, roads, or buildings were located directly above the pipeline where the fracture occurred. As shown in Photograph No. 1, two (2) homes were built in close proximity to the pipeline, with driveways crossing over the pipeline at two (2) points downstream of the fractured segment. During construction of the homes, the pipeline may have experienced vehicle loadings caused by construction equipment and/or vehicles crossing the pipeline at multiple locations, including over the fractured segment. There was no indication of construction, digging, localized flooding, or other ground movements in the area of the fractured segment occurring during or immediately prior to the pipeline rupture.

2.3 Specifications

2.3.1 At the request of EMPCo, the subject pipe was compared to two (2) versions of the API 5L specification throughout this report, both the edition that was in effect at the time the pipe was manufactured, and the current edition of said specification, both of which are detailed below.

- 2.3.1.1 At the time the pipe was manufactured in 1947 and 1948, the specification in effect was API STD. 5-L, 10th Edition, August 1945. Per this specification, the smelting type of steel was reportedly Open Hearth Steel, the pipe was classified as an Electric Welded Pipe, and the strength was specified to meet Grade B requirements. This edition will be referred to as API 5-L, 10th Edition throughout the report and the accompanying tables.
- 2.3.1.2 The currently applicable edition of the specification is ANSI/API 5L, 44th Edition, Effective October 1, 2007, with Errata dated January 2009, Addendum 1 dated February 2009, Addendum 2 dated April 2010, and Addendum 3 dated July 2011. The requirements for PSL 1 Welded Pipe, Grade X42 will be used for comparison, with the exception of the Charpy V-Notch (CVN) impact tests. For the CVN impact tests, there are no requirements for PSL 1 Welded Pipe, so the requirements for PSL 2 Welded Pipe will be referenced instead. This edition of the specification will be referred to as API 5L, 44th Edition throughout the report and accompanying tables.
- 2.4 Items Received for Testing
- 2.4.1 On April 16, 2013 at approximately 1:50 pm CST, HurstLab received two (2) cut sections of pipe, and various other items from the failure location in Mayflower, Arkansas, which had been transported on a flatbed trailer. The two (2) sections of pipe were each wrapped in protective plastic with the open ends of the pipe sealed, and with the entire surface covered with plastic padding to protect from damage during loading/unloading and transportation. A 55 gallon steel drum, containing the coating that was removed in the field where the pipe was sectioned transversely, as well as a small bag containing possible calcareous deposits, were also received. The two (2) sections of pipe are described below in the same manner they are referenced throughout the report.
 - 33' 11-1/2" Long Fractured Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it failed in service in Mayflower, Arkansas.

2) 19' 10" Long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it failed in service in Mayflower, Arkansas.

The Chain of Custody documents for the sections of pipe, as well as the steel drum of coating material and the possible calcareous deposits as well as the photographs documenting the evidence in the as-received condition are presented in Appendix II of this report.

3.0 METALLURGICAL EXAMINATION, TESTING AND ANALYSIS

- 3.1 Visual and Macroscopic Observations
- 3.1.1 A 49' 9-1/2" long section of the Pegasus Pipeline, which fractured over a length of 22' along the ERW seam and 3" into the base metal at Milepost 314.77 in Mayflower, Arkansas, as shown in Photographs No. 1 through No. 3, was removed from the ground by sectioning through three (3) locations of the pipeline following removal of the coating at those areas on the O.D. surface. The pipeline was transversely sectioned 3' upstream from the north girth weld through the adjoining intact pipe, 33' 11-1/2" from the north cut end, and 1' downstream from the south girth weld through the adjoining intact pipe.
- 3.1.2 The sections of pipe were received at HurstLab on April 16, 2013. The protective plastic, wrapping, and end plugs from both 33' 11-1/2" and 19' 10" long sections of the pipeline were carefully removed following receipt for examination and documentation of the evidence in the as-received condition, and to allow examination of the general condition of the pipe sections, such as the fracture, ERW seam and girth weld conditions, coating condition, evidence of any corrosion, mechanical damage, etc. Photographs No. 4 through No. 7 display the pipe sections in the as-received condition, and following removal of the plastic and wrapping.

Examination of the 33' 11-1/2" long section of the pipe revealed a 22' long fracture along the ERW weld seam, which traversed diagonally, approximately 3" in length, into the base metal near the south end of the

fracture. The fracture faces had been coated with a protective white grease in the field following the pipeline rupture to help preserve the fracture faces for subsequent analysis. All four (4) cut ends of the pipe sections were marked in the field denoting the location of the ERW seam, the relative position in ground, direction of the crude oil flow, station number and field cut match line in each section of the pipe. Photographs No. 8 and No. 9 display the as-received condition of the pipe and field markings on the pipe sections.

- 3.2 As-Received Condition of the Pipe and Coating
- 3.2.1 Following unloading of the pipe from the transport truck and unwrapping of the protective material, the pipe was closely inspected to ascertain and document the as-received condition of the pipe and the coating. The 33' 11-1/2" long section of pipe contained a circumferential girth weld at the north end, and an approximately 3' long section of the adjoining intact pipe. The fracture, which followed the ERW seam at the 12:00 o'clock position of the pipe, extended 22' 3" in length, with one fracture tip terminating in the north girth weld and the other in the base metal adjacent to the ERW seam. The maximum separation of the open crack was approximately 1-3/8" wide near the center of the crack, 12' from the north girth weld.
- 3.2.2 Examination of the coating showed a number of areas where the coating was damaged or split adjacent to the ERW seam. The maximum width and depth of the various splits in the coating on the O.D. surface of the pipe adjacent to the ERW seam, between the 10:30 and 1:30 o'clock positions, were measured and photographically documented. Photographs No. 10 through No. 23 show the condition of the coating from 3' north of the north girth weld, referenced to as -3' from the north girth weld, to the girth weld at 0', and all the way to 50' 9-1/2" south of the north girth weld. As previously mentioned, the coating had been removed in the field from the areas where the pipe had been transversely sectioned.

		Coatin	g Split	
Distance from		Maximum	Maximum	
North Gi	rth Weld	Width	Depth	Notes
-3'	0'	1"	*	Some coating had been removed during sectioning in the field
0'	4'	2"	0.10"	
4'	8'	0.5"	0.14"	Longitudinal fracture or
8'	12'	0.5"	*	rupture of the pipe
12'	16'	*	0.07"	extended from the north
16'	20'	0.25"	0.09"	girth weld at 0' to 22'
20'	24'	0.5"	0.10"	
24'	28'	1.5"	0.10"	
28'	30'11-1/2"	1"	0.05"	Some coating had been removed
30' 11-1/2"	35'	1"	0.15"	during sectioning in the field
35'	39'	1"	0.10"	
39'	43'	0.75"	0.11"	
43'	47'	0.5"	0.11"	
47'	50' 9-1/2"	1"	*	Some coating had been removed during sectioning in the field

*Not measurable at location.

The total thickness of the coating was estimated to be approximately 0.15" based on relatively intact areas of the coating, so some of the splits in the coating noted in the table above had likely penetrated to the base metal of the pipe.

In addition to the splits noted above, the coating at the bottom, or 6 o'clock position of the pipe was wrinkled, with the coating appearing to have sagged downward during the years the pipe lay buried. Although the coating did not appear stretched over the top and sides of the pipe, excess coating was folded over at the bottom of the pipe. Several places had small areas of coating missing, although it is not known at what point the coating loss had occurred during service. Additional photographs of the pipe and coating in the as-received condition are displayed in Photographs No. 24 through No. 64.

3.3 Coating Removal Process

A procedure for a safe removal of the coating from the O.D. surface of the pipe was developed and approved by EMPCo and PHSMA, and is listed in Section A4 of the Test Protocol in Appendix I.

The coating on the O.D. surface of the pipe was carefully removed on April 22, 2013 by Watkins Construction Company, LLC. (Watkins), a vendor contracted directly with EMPCo. Prior to proceeding, the contracted workers were briefed by HurstLab personnel as to the importance of preserving the fracture surface and integrity of the pipe; HurstLab personnel supervised the removal of the coating to ensure the safe removal of the coating.

The coating on both pipe sections was first wet down with water, and each pipe section was then tightly wrapped in plastic wrap to securely collect all the coating. To remove the coating it was first cracked by tapping, and was then gently peeled off. First striking the coating with a resin hammer was tried; when the resin hammer did not crack the coating a steel mallet was used. The steel mallet was tapped against the coating, cracking the coating but not damaging the pipe underneath. The pipe sections were then cleaned using mineral spirits. Extreme care was taken to prevent any damage to the pipe or the fracture surface that could have affected the metallurgical investigation.

All of the coating removed from the pipe sections at HurstLab, as well as the steel drum containing the coating that was removed in the field by EMPCo personnel, was collected and retained at EMPCo's facility in Corsicana, Texas. Appendix III shows several representative photographs of the coating removal process and contains the document signed by the employees of Watkins who removed the coating following the briefing by HurstLab personnel.

- 3.4 Condition of the Pipe Following Coating Removal
- 3.4.1 Following removal of the O.D. coating in accordance with the specified guidelines, the pipe sections were re-examined to ascertain and photographically document the conditions of the pipe. The bottom of the

pipe sections between approximately 4 and 8 o'clock, at the locations where the coating had wrinkled and sagged, was covered with a reddishorange substance, likely a mixture of the surrounding native sandy soil that the pipe had been buried in and various corrosion products resulting from contact between the pipeline and moisture. Some corrosion pitting was visible within this area, as well as at various locations along the O.D. surface where the coating had previously split and allowed moisture to contact the surface of the pipe. No preferential or knife-like corrosion was present along the ERW seam at 12 o'clock.

3.4.2 The depth of the corrosion pitting at the various locations around the O.D. surface of the fractured pipe section was measured using a certified and calibrated caliper, and the results are summarized in the following table.

Distance from North	Circumferential	Depth o	f Corrosio	n Pitting	
Girth Weld	(o'clock position)	Minimum	Average	Maximum	
-3' to 0'	A11	No Corro	osion Pittir	ng Visible	
0' to 4'	7:30 to 10:00	0.006"	0.017"	0.029"	
1' to 8'	1:30 to 3:00	0.008"	0.013"	0.026"	
4 10 8	6:45 to 10:00	0.002"	0.013"	0.037"	
8' to 12'	3:45 to 5:00	0.004"	0.011"	0.022"	
	7:30 to 11:15	0.002"	0.011"	0.026"	
$10' \pm 16'$	3:00 to 5:00	0.003"	0.013"	0.033"	
12° to 16°	6:30 to 10:00	0.003"	0.017"	0.031"	
1614 001	2:45 to 5:15	0.005"	0.015"	0.031"	
10 10 20	7:00 to 10:00	0.006"	0.012"	0.021	
$20' \pm 24'$	2:45 to 5:00	0.004"	0.020"	0.033	
20 10 24	7:15 to 10:00	0.005"	0.010"	0.021	
24' to 28'	A11	No Corro	osion Pittir	ng Visible	
28' to 31'	A11	No Corrosion Pitting Visible			

As shown, all of the corrosion pitting occurred between the 1:30 and 11:15 o'clock positions on the fractured section of pipeline; no pitting corrosion was observed at the 12 o'clock position where the ERW seam was positioned in the pipe. The average pitting depth over the entire section of the pipe was determined to be 0.014", and the maximum depth at any location was 0.037", which are approximately 4.5% and 12%, respectively, of the total wall thickness of the pipe. No corrosion pitting

was present at either cut end of the fractured pipe section. Photographs showing the corrosion pitting on the east and west sides of the pipe following removal of the coating are displayed in Photographs No. 65 through No. 82.

3.4.3 The I.D. surface of both pipe sections was examined using oblique lighting and pivoting mirrors and magnifying glasses prior to sectioning. No corrosion pitting was visible on the I.D. surface of either the fractured or intact sections of pipe. However some shallow bottomed depressions were observed at random locations.

Following sectioning of the 33' 11-1/2" long and the 19' 10" long pipe lengths, the I.D. surfaces at several areas were more closely examined. Multiple shallow depressions, including those noted above, were visible around the entire circumference of the I.D. surface. The depressions were very smooth in appearance and contained no visible corrosion products, suggestive of mechanical deformation as opposed to corrosion pitting. No evidence of any significant corrosion pits was visible on the I.D. surface. Photographs No. 83 and No. 84 show representative areas of the I.D. surface.

- 3.5 Dimensional Measurements
- 3.5.1 The out-of-roundness at intact locations at either end of the fracture, as well as at the south cut end of the 33' 11-1/2" long fractured section of pipe, was determined as specified in Section 10.2.8.3 of API 5L, 44th Edition. At each of the three (3) locations, four (4) measurements of the I.D. were taken, spanning between 12:00 and 6:00 o'clock, 1:30 and 7:30 o'clock, 3:00 and 9:00 o'clock, and 4:30 and 10:30 o'clock using a certified and calibrated I.D. micrometer. In accordance with the method specified in the aforementioned section of API 5L, 44th Edition, the out-of-roundness at each location was then determined to be the difference between the largest and smallest I.D. measurement. The calculated out-of-roundness at each location is displayed in the following table, along with the API requirements.

Circumferential Location		I.D. Measurement			
of Measurem	ient (o'clock)	Distance	from North Gi	rth Weld	
Begins	Ends	-6"	271"	371"	
12:00	6:00	19.3652"	19.363"	19.392"	
1:30	7:30	19.463"	19.375"	19.457"	
3:00	9:00	19.353"	19.390"	19.357"	
4:30	10:30	19.350"	19.354"	19.437"	
Calcu Out-of-Ro	llated oundness	0.111"	0.036"	0.100"	
API 5L, 4 Out-o	0.400"				

As shown, at each of the locations tested the calculated out-of-roundness was determined to be within the allowable tolerance specified in API 5L, 44th Edition, Table 10, for welded pipe with a nominal O.D. between 6.625" and 24". The results of the multiple I.D. measurements and the out-of-roundness calculations are recorded in Table 1.

3.5.2 Wall thickness measurements of the failed pipe were made at 2" intervals along the fracture adjacent to each mating fracture surface, using a certified and calibrated micrometer. The measurements were taken beginning at a location 40" south of the north girth weld and terminating at the crack tip, located 267", or 22' 3", from the north girth weld. Although the other crack tip was located at the north girth weld, the distance between the mating fracture surfaces was too small to allow for accurate wall thickness measurements at or directly adjacent to the north girth weld.

The smallest wall thickness was measured to be 0.310" and the largest was 0.321". The average wall thickness was calculated to be 0.315", while the nominal specified wall thickness for the 20" O.D. pipe was 0.312". The complete results of the wall thickness measurements taken on either side of the crack using a certified and calibrated digital micrometer are recorded in Table 2.

- 3.5.3 The wall thickness of the fractured pipe was measured at numerous locations both at and away from the fracture by SGS-PfiNDE, Inc. (PfiNDE), an approved third party vendor using the non-destructive ultrasonic test method.
- 3.5.3.1 A grid or 'map' of ultrasonic wall thickness measurements, covering from 12" upstream to 12" downstream of the fracture and around the entire 360° circumference of the pipe, were taken at 2" intervals over a total pipe length of 24.67'. The wall thickness was determined to range between 0.288" and 0.316" along the evaluated length. No internal corrosion areas were noted, although a linear inclusion in the mid-wall area of the pipe was noted on the CMAPPs (AUT) inspection. The complete results of the ultrasonic wall thickness measurements of the fractured pipe are recorded in Appendix IV.
- 3.6 Residual Stresses
- 3.6.1 As the pipe containing the fracture was sectioned for fractographic examination, a significant amount of displacement of the sectioned portion of pipe was observed near the crack tip adjacent to the north girth weld, as shown in Photograph No. 85, indicating that the pipe had been under a considerable amount of constraint since it was manufactured, placing the ERW seam under sustained tension forces, which contributed to the increase in stresses at the ERW seam joint. The separation of the fracture faces confirms elastic spring back in the circumferential direction, indicating the presence of circumferential residue stresses likely associated with the original forming and ERW seam welding of the pipe. However, the extent to which these residual stresses may have contributed to the initiation of the hook cracks or the final fracture is unknown at this time.
- 3.7 Fractographic Examination
- 3.7.1 The mating fracture faces of the entire 22' 3" long fracture were visually examined using oblique lighting prior to removal of the coal-tar coating, but following removal of the protective grease with mineral spirits, acetone, and a nylon brush. A thorough, careful examination of both

mating fracture faces revealed fine chevrons or radial lines emanating from the fracture zone at a distance between 19' 10" and 21' 6-1/4" from the north girth weld, indicating that the final fracture, which resulted in the leakage of the crude oil, originated from this zone. Visual examination of the mating fracture faces from the distance between 1/4" and 26" south of the north girth weld revealed evidence of upturned grain flow lines or bands, and/or inclusions near the outer wall. However, there was no evidence of any chevron marks pointing to this fracture zone, indicating that the fracture did not initiate from this zone, but rather propagated through the surface imperfections. Photograph No. 86 displays overall and close-up views of the fracture origin and the tip areas, as well as field markings on the pipe.

The fracture zones from a distance between 19' 10" and 20' from the north girth weld was further examined to characterize the fracture morphologies. Fractographic examination revealed flat, highly oxidized, fracture zones predominantly in the upper half (adjacent to the O.D. surface) of the fracture surface along the ERW seam, which are characteristic of hook cracks. Examination further revealed radial lines emanating from the tips of the hook cracks, indicating that the final fracture, which occurred during service and resulted in the leakage of the crude oil, originated from the tips of hook cracks that had reduced the effective cross-sectional area of the wall at the ERW seam location. A hook crack is defined in API Bulletin 5TL as "Metal separations resulting from imperfections at the edge of the plate of skelp, parallel to the surface, which turn toward the inside diameter or outside diameter pipe surface when edges are upset during welding." Photograph No. 87 displays the final fracture initiation sites with insert photographs, revealing the hook cracks, final fracture zones, and the direction of the fracture propagation. The secondary fracture zone, found from a distance between 1/4" and 26" from the north girth weld, contained ERW seam manufacturing imperfections in the upset/HAZ area that had most likely cracked during the final rupture, and is displayed in Photographs No. 88 through No. 94.

3.7.2 A section of the pipe containing the hook cracks, which measured approximately 3-1/2" to 4" in width and approximately 40" in length, was cut and removed from the pipe for closer examination of the O.D. and I.D.

surfaces, and characterization of the fracture morphology. Photographs No. 95 and No. 96 display the cut sections. Close-up examination of the fracture face from a distance between 18' 10" and 19' 10-1/4" from the north girth weld revealed fine chevrons pointing to the hook cracks, indicating that the final fracture originated from the hook cracks and rapidly propagated upstream toward the north girth weld through the HAZ of the ERW seam. Photographs No. 97 through No. 100 display the evidence of chevrons pointing to the hook cracks. Further examination of the fracture face from a distance between 19' 10" and 20' 8" from the north girth weld revealed continuation of the hook cracks and transitioning of the radial lines into vertical lines, indicating the primary fracture origins to be between 20' 2-3/8" and 20' 7-3/8", as displayed in Photographs No. 101 through No. 103. Examination of the remaining fracture surface of the selected fracture face revealed continuation of the hook cracks with intermittent termination and continuation up to a location approximately 20' 11" from the north girth weld, and occasional hook cracks near the I.D. surface of the pipe with chevrons pointing in the opposite direction, indicating that the remaining final fracture propagated toward the south end and terminated in the base metal, as displayed in Photographs No. 104 through No. 110.

In addition to the total depth of the hook cracks, the length and depth below the O.D. surface of various fracture zones on the fracture surface were measured as per the client's request. The darker smooth areas on the fracture surface, all beginning at the O.D. surface, indicated areas of the hook cracks that contained a tightly adhered layer of oxide scale from exposure to moisture; the length and maximum depth of each of these areas was measured. Several axial ridges were also visible on the fracture surface within the hook cracks, formed most likely as a result of the microstructural conditions of the upturned banded grain structure within the ERW seam upset and primary HAZ and potential microcracks through which the fracture occurred. The following table records the measurements, along with the distance from the north girth weld and reference to the photographs showing the various fractographic features.

Fracture Zone	Photograph	Distance from	Feature	Total	Depth Below
Number	Number	North Girth Weld	Appearance	Length	O.D. Surface
1	101	20' 3/8" to 20' 7/8"	Darker Smooth Area	1/2"	0.125"
2	102	20' 2-1/8" to 20' 2-5/8"	Darker Smooth Area	1/2"	0.063"
3	102 - 103	20' 3" to 20' 4-3/8"	Darker Smooth Area	1-3/8"	0.085"
4	102	20' 3" to 20' 3-3/4"	Ridge	3/4"	0.061"
5	102 - 103	20' 3-7/8" to 20' 4-1/8"	Ridge	1/4"	0.058"
6	103	20' 4-5/8" to 20' 7-5/8"	Darker Smooth Area	3"	0.150"
7	103	20' 4-5/8" to 20' 6-3/8"	Ridge	1-3/4"	0.113"
8	104	20' 7-7/8" to 20' 8-1/8"	Darker Smooth Area	1/4"	0.046"
9	104	20' 8-5/8" to 20' 9"	Darker Smooth Area	3/8"	0.063"
10	104 - 105	20' 9-1/8" to 20' 11-1/4"	Darker Smooth Area	2-1/8"	0.048"
11	105 - 106	21' 1/8" to 21' 1-1/2"	Darker Rough Area	1-3/8"	0.062"
12	106 - 107	21' 3" to 21' 4-3/8"	Darker Rough Area	1-3/8"	0.031"
13	107	21' 5" to 21' 5-1/2"	Darker Rough Area	1/2"	0.042"
14	107	21' 5-1/2" to 21' 5-7/8"	Darker Smooth Area	3/8"	0.020"

3.7.3 An approximately 5-1/2" long section of the fracture surface containing the primary final fracture origins and some of the hook cracks between a distance of 20' 2-1/2" and 20' 8" from the north girth weld was removed, electrolytically descaled, cleaned using alkaline Endox® 214 solution, and examined at low magnifications to ascertain the general condition of the pipe surface at the O.D. and I.D. surfaces along the ERW seam near the fracture origins. The mating fractured surface was not cleaned to preserve the sample for the later evaluation of the condition of the scale or oxidation that was present on the fractured face.

Close-up examination of the cleaned fracture face containing hook cracks and the final fracture origins revealed that one of the final fracture origins was at a location where the outer coal-tar coating had split diagonally during service. Some of the coal-tar had melted onto the fracture surface. The examination also revealed localized melting of the pipe metal caused by the copper electrode contacts that were apparently originally used to weld the skelp to form the ERW pipe. Photographs No. 111 through No. 116 display the O.D. surface condition of the pipe near the fracture origins.

Close-up examination of the fracture face between a distance of 20' 2-1/2" and 20' 8" from the north girth weld revealed highly oxidized hook cracks and the final fracture originating from the hook cracks, which were present to a maximum depth of 0.150". Photographs No. 117 through No. 122 display the hook cracks and the origins from where the final fracture initiated and propagated north toward the north girth weld along the ERW seam and south into the base metal south of the fracture origins.

3.7.4 The hook cracks and the final fracture zones across the entire fracture face from the O.D. to the I.D. of the pipe at two (2) of the several fracture origins, located at 20' 5-5/16" and 20' 6-3/4" from the north girth weld, as shown in Photographs No. 117 through No. 122, were examined at higher magnifications using a Scanning Electron Microscope (SEM) to further characterize the fracture morphologies. The SEM examination of the hook cracks revealed fractures through the multiple planes across the weld upset, HAZ, and/or fusion line of the ERW seam, which were covered with tightly adhered scale or oxidation products obscuring the fracture morphology. However, the fractures through multiple planes in the weld upset, HAZ, and/or fusion line suggest that the cracks propagated through the path of least resistance. There was some evidence of what appeared to be intergranular fracture in an extremely small area of the hook crack, which can be attributed to the prior grain structure of the material. The final fracture zone revealed essentially cleavage to quasicleavage fracture, indicative of brittle instantaneous failure. The fracture through the weld flash near the I.D. surface revealed evidence of ductile fracture. Photographs No. 123 through No. 150 document the fracture morphologies at the fracture origin locations.

3.8 Crack Measurements

- 3.8.1 Fractographic examination of the fracture face between 19' 10" and 22' revealed the presence of the hook cracks along the multiple planes of the ERW seam between a distance of 19' 10-1/8" and 21' 9-1/2"; however, the hook cracks were predominantly located between 19' 10-1/8" and 20' 11-3/8", and 21' 2" and 21' 9-1/4", as measured from the north girth weld. The maximum depth of the hook cracks, from where the final fracture initiated during service and lead to the rupture of the pipeline, was 0.150"; however, the depth of the hook cracks varied between 0.016" and 0.150", as recorded in Table 3.
- 3.8.2 The mating fracture faces in the crack origins area from where the final fracture had initiated between a distance of 20' 2-1/2" and 20' 8" were reconstructed and sectioned transversely across the fractured ERW seam, more specifically at distances of 20' 3-3/4", 20' 4-7/8", and 20' 5-1/2" from the north of the girth weld, and were prepared for metallographic examination as well as the crack width measurements. Additional cross-sections were also removed through the fractured ERW seam from a distance of 20' 6-13/16" and intact seam from a distance of 35' 8-1/2" and prepared for metallographic examination.
- 3.8.3 The maximum width and depth of the hook cracks were measured at several locations and were found to be 0.0038" and 0.150", respectively. It should be noted here that the hook crack width measurements were made following reconstruction of the two (2) mating fracture faces and, therefore, the values shall be considered as approximates only. Table 4 records the hook cracks width measurements.
- 3.9 Metallographic Evaluation
- 3.9.1 Microstructural examination of the cross-sections removed transversely through the ERW seam at a distance of 20' 4-7/8" and 20' 6-13/16" from the north girth weld and prepared for metallographic examination was performed to characterize the microstructural conditions of the ERW seam at the fracture origin locations. Microstructural examination revealed hook cracks through the ERW upset/HAZ along the realigned inclusions and upturned bands of extremely brittle untempered martensite.

Both cross-sections removed through the final fracture origins and prepared for metallographic examination confirmed the presence of hook cracks through the excessive amount of manganese sulfide inclusions and bands which were essentially parallel to the ERW fusion line, an undesirable condition that was apparently created during the skelp forming and ERW processes. The microstructure of the upturned bands consisted of very brittle, hard untempered martensite, while the ERW upset/HAZ area consisted of a mixed-microstructure with grain boundary ferrite, unresolved bainite, and some untempered martensite, which is undesirable since this microstructure possesses extremely low ductility. The secondary HAZ and the base metal consisted of grain boundary ferrite and pearlite.

Microstructural examination also revealed evidence of localized melting and cracking to a shallow depth at the electrode contact areas at the O.D. locations parallel to the weld seam. Photographs No. 151 through No. 202 document the microstructural condition of the ERW seam at the locations of the hook cracks from where the final fracture had initiated and predominantly propagated upstream toward the north girth weld.

3.9.2 A cross-section was removed transversely through the intact portion of the ERW seam of the 49' 9-1/2" section of the pipeline at a distance of 35' 8-1/2" from the north girth weld and prepared for metallographic examination to characterize the microstructural condition of the ERW seam.

The microstructural examination revealed excessive amounts of predominantly manganese sulfide stringers and some oxide inclusions, several of them aligned parallel to the fusion line in the upset area of the ERW seam, which is a highly undesirable condition and can lead to the formation of hook cracks. The microstructural examination of the cross-section following etching in a 2% Nital solution revealed the presence of some upturned bands, however not as severe as those found in the fractured seam. The microstructure of the upturned bands consisted of brittle untempered martensite, while the upset/HAZ away from the bands consisted of mix-microstructure of grain boundary ferrite, bainite, and some untempered martensite. Photographs No. 203 through No. 220 document the microstructural condition of the intact ERW seam.

3.9.3 Longitudinal cross-sections were removed through the corrosion pitting at representative areas on the O.D. surface and through the shallow indentations on the I.D. surface, and were metallographically prepared and etched in a solution of 2% Nital. On the O.D. surface multiple pits filled with oxides and corrosion products were visible, extending to a maximum depth of 0.008" on the metallographically prepared cross-sections. Following etching, the non-uniform pits were confirmed to be the result of material loss due to corrosion, with no evidence of grain deformation or mechanical damage. As previously noted, all of the corrosion pitting was observed between the 1:30 and 11:15 o'clock positions on the fractured section of pipe, and no pitting corrosion was observed at the 12:00 o'clock position where the ERW seam was positioned in the pipe. The corrosion observed on the O.D. surface did not contribute to the pipeline failure.

Examination of the I.D. surfaces on the metallographically prepared cross-sections revealed that the shallow depressions were smooth indentations, between 0.137" and 0.189" wide and up to 0.007" deep. The I.D. surface and the surfaces of the indentations were smooth, with no visible oxide scale, and in the etched condition some grain deformation was visible at the edges of the indentations, indicating mechanical damage. However, the thickness of the microstructural band containing partial decarburization on the I.D. surface remained constant, indicating that the impressions occurred most likely during the hot-rolling of the steel or manufacturing of the pipe and not during service. The I.D. surface indentations did not contribute to the pipeline failure. Photographs No. 221 through No. 226 display representative areas of the O.D. and I.D. surfaces on the metallographically prepared longitudinal cross-sections in both the as-polished condition and following etching in a solution of 2% Nital.

3.10 Microhardness Surveys

3.10.1 Vickers microhardness surveys were performed on the metallographically prepared cross-sections at both the representative fractured and intact locations of the ERW seam on the pipe sections in accordance with the test method specified in ASTM E384-11^{c1}. The Vickers microhardness

values were converted to equivalent Rockwell B or C scale values based on the conversions provided in ASTM E140-07, Tables 1 and 2. It should be emphasized that the hardness equivalents are approximates based on equations developed from empirical data, and are typically higher than the results obtained by testing using the larger Rockwell indenter and much higher load forces.

3.10.2 Vickers microhardness surveys were performed on the metallographically prepared cross-sections removed from representative fractured areas of the ERW seam at 20' 4-7/8" and 20' 6-13/16" from the north girth weld. Each cross-section was evaluated along the fracture surface, including along the hook crack(s), the hardened martensitic upturned grains, and the final fracture zone, as well as in the ERW seam at the fusion line, the HAZ and the base metal. The results of the Knoop microhardness surveys at fractured locations of the pipe are summarized in the following table.

	Average Hardness, Rockwell Equivalent					
Cross-section						
Location		Heat-	t- At Fracture Surface			ERW
(from North	Base	Affected	Hook	Hardened	Final	Fusion
Girth Weld)	Metal	Zone	Crack	Upturned Grains	Fracture	Line
20' 4-7/8"	96 HRB	100 HRB	29 HRC	52 HRC	28 HRC	42 HRC
20' 6-13/16"	100 HRB	21 HRC	29 HRC	49 HRC	29 HRC	32 HRC

As shown, the hardness varied extensively along the fracture surface of the hook crack(s) within the upturned grains. The hardened, martensitic microstructure was 20 to 23 Rockwell C hardness points higher than the adjacent microstructure within the upturned grains and along the fusion line in the ERW seam. The hardness decreased the farther away from the ERW seam, resulting in approximately a 30 Rockwell C hardness point difference between the ERW seam and the softer base metal. The large difference in hardness is undesirable and results in increased internal stresses, which can contribute to crack initiation and propagation. The complete results of the Vickers microhardness surveys, including micrographs showing the locations of each indentation on the metallographically prepared cross-sections removed through the crack are displayed in Table 5 and Table 6. 3.10.3 A Vickers microhardness survey was also performed on the metallographically prepared cross-section that was removed through the ERW seam at a representative intact area approximately 35' 8-1/2" from the north girth weld for comparison with the data from the fractured location. The results of the Vickers microhardness survey of the intact area are displayed in the following table.

Cross-section Location		Hardr	ness, Rockwell Equival	ent
(from North	Base	Heat-Affected	Upturned Grain	ERW
Girth Weld	Metal	Zone	Flow Lines	Fusion Line
35' 8-1/2"	100 HRB	99 HRB	Varied between	Varied between
35 8-1/2	average	average	21 HRC and 54 HRC	23 HRC and 54 HRC

As shown, the cross-section removed from an intact area of the pipe also contained a hardened martensitic microstructure within the upturned grain flow pattern of the ERW seam at the O.D. surface. The fusion line, HAZ, and base metal hardnesses of the intact cross-section were similar to those areas on the fractured cross-sections, including the large variation between the ERW seam and the base metal of the pipe. The complete results of the Vickers microhardness survey, including a micrograph of the metallographically prepared cross-section removed from the ERW seam in an intact area, are displayed in Table 7.

3.11 Tensile Tests

.

i.

- 3.11.1 In order to determine the ultimate tensile stress, yield stress at a 0.5% offset, and percent elongation of the pipe, multiple tensile test specimen blanks were removed through the ERW seam, as well as in both the transverse and longitudinal directions away from the seam, on the intact 19' 10" long section of pipe as shown in Appendix V. All of the test specimens were machined to have a 2" long gauge length, a 1-1/2" wide reduced section, and represented essentially the entire wall thickness, with only slight sanding to remove minor surface imperfections or, as noted, the weld flash.
- 3.11.2 Six (6) transverse tensile test specimen blanks were removed through the ERW seam and were then flattened as specified in both the 10th Edition and the 44th Edition of API 5L. The tensile test specimens were then

machined and tested in accordance with ASTM A370-12a and the applicable sections of each edition of the API 5L specification. The results of the transverse tensile tests through the ERW seam, along with the tensile requirements from both the 10th Edition of API 5-L that was in effect at the time the pipe was manufactured and the current API 5L, 44th Edition are shown in the following table.

Sample	Ultimate	Yield		Fracture
Identification	Stress (psi)	Stress (psi)	Elongation (%)	Location
Transverse, Through ERW Seam, Weld Flash Included, Sample 1	101,000	77,000	4	HAZ
Transverse, Through ERW Seam, Weld Flash Included, Sample 2	93,500	79,000	5	HAZ
Transverse, Through ERW Seam, Weld Flash Included, Sample 3	102,000	84,000	23	Base Metal
Transverse, Through ERW Seam, Weld Flash Removed, Sample 1	85,500	73,000	3	HAZ
Transverse, Through ERW Seam, Weld Flash Removed, Sample 2	85,500	75,000	3	HAZ
Transverse, Through ERW Seam, Weld Flash Removed, Sample 3	92,500	77,000	5	HAZ
API 5-L, 10 th Edition, Electric Welded Pipe, Open Hearth Steel, Grade B	60,000 minimum	None Specified	None Specified	Not Applicable
API 5L, 44 th Edition, PSL 1,	60,200	None	None	Not
Welded Pipe, Grade X42	minimum	Specified	Specified	Applicable

As shown, all of the tensile test specimens, regardless of whether the specimens contained the weld flash, met the minimum ultimate stress requirements specified in both API 5-L, 10th Edition and API 5L, 44th Edition. The complete results of the transverse tensile tests through the ERW seam are recorded in Table 8.

3.11.3 Multiple base metal transverse tensile test specimen blanks were removed from the pipe, at locations 90° from the ERW seam and 180° from the ERW seam, and were flattened prior to machining. Longitudinal base metal tensile test specimen blanks were also removed from the pipe at a location 90° from the ERW seam. All of the tensile test blanks were machined and tested in accordance with ASTM A370-12a and the applicable sections of sections of each edition of API 5L. The results of both the transverse and longitudinal base metal tensile tests, along with the tensile requirements from both the 10th Edition of API 5-L that was in effect at the time the pipe was manufactured and the current API 5L, 44th Edition are shown in the following table.

Sample	Ultimate	Yield	
Identification	Stress (psi)	Stress (psi)	Elongation (%)
Transverse, 90° from	87.000	50,000	20
ERW Seam, Sample 1	87,000	59,000	30
Transverse, 90° from	86 E00	50.000	2.1
ERW Seam, Sample 2	80,300	39,000	51
Transverse, 90° from	80.000	62 000	28
ERW Seam, Sample 3	89,000	02,000	20
Transverse, 180° from	87 000	63 000	28
ERW Seam, Sample 1	87,000	03,000	20
Transverse, 180° from	85 500	60.000	28
ERW Seam, Sample 2	83,300	00,000	20
Transverse, 180° from	87 E00	64 000	0.0
ERW Seam, Sample 3	87,300	04,000	20
Longitudinal, 90° from	80.000	64 500	2.1
ERW Seam, Sample 1	89,000	04,300	51
Longitudinal, 90° from	00.000	66 500	2.1
ERW Seam, Sample 2	90,000	00,300	51
Longitudinal, 90° from	00 500	68 500	2.1
ERW Seam, Sample 3	90,300	08,300	51
API 5-L, 10 th Edition, Electric Welded	60,000	35,000	 1
Pipe, Open Hearth Steel, Grade B	minimum	minimum	Unknown
API 5L, 44 th Edition, PSL1,	60,200	42,100	27%
Welded Pipe, Grade X42	minimum	minimum	minimum

¹The required minimum elongation specified on the tensile requirements table in the provided paper copy of API 5-L, 10th Edition is illegible.

As shown, all of the base metal tensile test specimens, in both the transverse and longitudinal directions, met the requirements specified in both API 5-L, 10th Edition and API 5L, 44th Edition. Although the measured yield stress typically exceeded the minimum ultimate stress requirement, it should be noted that there were not any maximum strength requirements. The complete results of the base metal transverse and longitudinal tensile tests are recorded in Tables 9 and 10.

3.11.4 Sub-sized round, non-flattened transverse tensile test specimen blanks were removed through the ERW seam, 90° from the ERW seam, and 180° from the ERW seam on the intact section of pipe, and were machined and tested in accordance with the applicable sections of API 5L and ASTM A370-12a. The results of the non-flattened transverse tensile tests are summarized in the following tables.

Sample	Ultimate	Yield	
Identification	Stress (psi)	Stress (psi)	Elongation (%)
Transverse, Through ERW Seam, Weld Flash Removed, Non-flattened	99,600	65,100	21
API 5-L, 10 th Edition, Electric Welded	60,000	None	None
Pipe, Open Hearth Steel, Grade B	minimum	Specified	Specified
API 5L, 44 th Edition, PSL1,	60,200	None	None
Welded Pipe, Grade X42	minimum	Specified	Specified
Sample Identification	Ultimate Stress (psi)	Yield Stress (psi)	Elongation (%)
Transverse, 90° from ERW Seam, None-flattened	86,100	56,700	27
Transverse, 180° from ERW Seam, None-flattened	83,600	57,900	22
API 5-L, 10 th Edition, Electric Welded	60,000	35,000	U a la a carra l
Pipe, Open Hearth Steel, Grade B	minimum	minimum	Unknown
API 5L, 44 th Edition, PSL1,	60,200	42,100	27%
Welded Pipe, Grade X42	minimum	minimum	minimum

¹The required minimum elongation specified on the tensile requirements table in the provided paper copy of API 5-L, 10th Edition is illegible.

As shown, the sub-sized, non-flattened transverse tensile test specimens met the requirements specified in both API 5-L, 10th Edition and API 5L, 44th Edition. The complete results of the sub-sized, non-flattened transverse tensile tests are recorded in Table 11.

3.12 Charpy V-Notch Impact Tests

3.12.1 Test blanks for multiple sets of transverse Charpy V-Notch (CVN) impact test specimens were removed from the intact 19' 10" long section of pipe as shown in Appendix V. Sets of half-sized 10 mm x 5 mm test specimens were machined per Section 9.8 of API 5L, 44th Edition and ASTM A370-12a and were notched in the fusion line of the ERW seam, the primary HAZ of the ERW approximately 1 mm from the fusion line, and the base metal. Then for each notch location, one (1) set of three (3) specimens was tested per ASTM A370-12a at the selected test temperatures of plus 32°F, plus 65°F, plus 80°F, and plus 95°F. Base metal specimens were also tested at additional temperatures.

3.12.2 The results of the CVN impact tests for each location and each test temperature are recorded in the following tables.

V-Notch Location: ERW Fusion Line						
Specimen Number	Test Temperature	Impact Value (ft-lbf)	Lateral Expansion (mils)	Percent Shear (%)		
1		3	0	0		
2	Plus 95°F	2	1	0		
3		3	0	0		
1		3	0	0		
2	Plus 80°F	2	0	0		
3		3	1	0		
1		3	1	0		
2	Plus 65°F	2	0	0		
3		3	1	0		
1		3	0	0		
2	Plus 32°F	3	0	0		
3		2	0	0		

V-Notch Location: ERW Primary Heat-Affected Zone						
Specimen Number	Test Temperature	Impact Value (ft-lbf)	Lateral Expansion (mils)	Percent Shear (%)		
1		3	3	0		
2	Plus 95°F	3	4	0		
3		4	6	0		
1		5	7	0		
2	Plus 80°F	4	5	0		
3		8	5	0		
1		3	2	0		
2	Plus 65°F	3	1	0		
3		5	2	0		
1		4	0	0		
2	Plus 32°F	3	0	0		
3		4	0	0		

V-Notch Location: Base Metal						
Specimen Number	Test Temperature	Impact Value (ft-lbf)	Lateral Expansion (mils)	Percent Shear (%)		
1		10	16	15		
2	Plus 95°F	10	12	10		
3		10	14	10		
1		9	9	5		
2	Plus 80°F	9	10	5		
3		9	13	5		
1		10	13	5		
2	Plus 65°F	10	14	5		
3		10	13	5		
1		8	8	5		
2	Plus 32°F	9	12	5		
3		9	10	5		
1	Zero°F	5	1	0		
2		4	2	0		
1	Minus 32°F	2	0	0		

As shown, the impact values at each notch location were essentially the same between plus 32°F and plus 95°F, while the base metal impact values at 0°F were half the values at 32°F and above, and continued to drop with lower temperatures. The fusion line of the ERW seam had the lowest impact values and the base metal, as expected, had the highest values. The lateral expansion and percent shear was essentially zero at the fusion line of the ERW seam, and the lateral expansion was only slightly higher in the HAZ. The base metal had the largest lateral expansion and percent shear values. The results of the CVN impact tests are recorded in Tables 12, 13, and 14.

At the time the pipe was manufactured, no CVN impact tests or requirements were specified in APL 5-L, 10^{th} Edition. Likewise, there are no impact requirements for Type PSL 1 welded pipe in the current 44^{th} Edition of API 5L. The only impact requirements for comparison are that in the 44^{th} Edition of API 5L, for all notch locations on Type PSL 2 welded pipe, Grade $\leq X60$, half-size transverse test specimens are required to have a 10 ft-lbf minimum average for a set of three test specimens and 8 ft-lbf minimum for a single individual test specimen, when tested at a test temperature of plus 32° F.

3.12.3 The CVN impact test results were then intended to be used to determine the lower shelf energy, upper shelf energy, the ductile-to-brittle transition temperature for the base metal, and if possible, the ERW seam, by plotting the results and developing an S-curve graph. The ductile-to-brittle transition temperature for the ERW fusion line and HAZ can not be determined, because the results of the impact tests at these areas were essentially the same regardless of test temperature. All of the CVN impact test specimens notched in the ERW seam, whether at the fusion line or in the HAZ, failed in an essentially brittle manner, therefore the ductile-tobrittle transition temperature is above 95°F and is outside the scope of this investigation.

However, additional tests at a temperatures below plus 32°F were performed on transverse CVN impact test specimens machined from the base metal because the base metal test specimens did fracture in a more ductile manner. The lower shelf would be considered to be around 2 ft-lbf for the size tested, or 4 ft-lbf for a full-size test specimen.

3.13 Chemical Analyses

3.13.1 An approximately 2" by 2" section was removed away from the ERW seam on the intact 19' 10" long section of pipe, as shown in Appendix V, and the surface was sanded smooth in preparation for determining the chemical composition of the pipe using the Optical Emission Spectroscopic (OES) test method in accordance with ASTM E415-08, with the percent carbon determined by an approved vendor using the combustion method specified in ASTM E1019-11. The results of the chemical composition analysis, as well as the compositional requirements for both the 10th Edition of API 5-L that was in affect at the time the pipe was manufactured and the current API 5L, 44th Edition are shown in the following table.

Element (wt%)	Sample Tested	API 5-L, 10 th Edition, Electric Welded Pipe, Open Hearth Steel, Grade B Spec.	API 5L, 44 th Edition, PSL 1, Welded Pipe, Grade X42 Specification
Carbon	0.30	0.30 max	0.26 max
Manganese	1.47	0.35 to 1.50	1.30 max
Phosphorus	0.017	0.045 max	0.030 max
Sulfur	0.031	0.06 max	0.030 max
Silicon	< 0.01	1	1
Chromium	< 0.01	1	0.50 max
Nickel	0.04	1	0.50 max
Molybdenum	< 0.01	1	0.15 max
Copper	0.02	1	0.50 max
Aluminum	< 0.01	1	1
Niobium	< 0.01	1	2
Vanadium	< 0.01	1	2
Titanium	<0.01	1	2
	Base	Base	Base

¹Analytical range not specified for element.

²Sum of Niobium + Vanadium + Tantalum = 0.15% maximum

As shown, the pipe met the chemical composition that was specified in API 5-L, 10th Edition at the time of the pipe manufacture, but does not meet the compositional requirements specified in the current API 5L, 44th Edition for welded pipe. The complete results of the OES chemical analysis of the pipe are recorded in Table 15.

3.13.2 The foreign materials on the fracture surfaces, the O.D. surface, and the tightly adhered, very viscous black coating of the pipe was analyzed using the Energy Dispersive X-ray Spectroscopic (EDS) test method in accordance with ASTM E1508-12a in order to determine the elements present and the relative amounts of each. It should be noted that the fracture surface was protected with white grease prior to shipment to the laboratory, which was removed with the mineral spirit and acetone, and therefore the results of the EDS analysis may not be taken at the face value. Furthermore, it should also be noted that EDS is a semi-quantitative test method, and that the results should be used as comparative or relative values only. It should also be noted that the EDS used was not capable of detecting light elements, those elements with atomic weights less than fluorine.

	Fracture Surface	Fracture Surface	Fracture Surface
Element (wt%)	EDS-1	EDS-2	EDS-3
Magnesium	3.980	1.925	2.084
Aluminum	3.484	4.776	3.118
Silicon	12.974	12.032	8.578
Sulfur	4.081	2.144	3.006
Chlorine	2.794	2.377	1.864
Potassium	0.975	0.883	0.698
Calcium	1.162	0.874	1.198
Titanium	0.810	0.836	1
Manganese	1.603	1.056	1.541
Iron	68.137	73.097	77.912

The following table shows the results of the EDS analysis at three (3) different locations of the fracture surface.

¹Element not detected.

As shown, in addition to iron and manganese from the base metal of the pipe, high levels of silicon, aluminum, and magnesium, were detected, most likely due to soil adhering to the fracture surface; similarly the calcium, potassium, and titanium were also likely from the surrounding soil. High levels of the corrosive elements chlorine and sulfur were also detected, although no pitting corrosion had yet occurred on the fracture surfaces. The complete results of the EDS analyses of the material on the fracture surfaces, including line spectra and SEM images of each location, are recorded in Tables 16, 17, and 18.

3.13.3 The chemical composition of the reddish-brown products on the O.D. surface of the pipe was also evaluated using the EDS test method. The results of the EDS analysis are displayed in the following table.

	Reddish-Brown
Element (wt%)	Product on O.D.
Magnesium	0.417
Aluminum	6.783
Silicon	33.882
Sulfur	0.391
Potassium	1.679
Titanium	0.949
Manganese	0.306
Iron	55.594

As shown, the products on the O.D. surface of the pipe were composed of primarily silicon with aluminum and potassium, in addition to the iron from the base metal of the pipe. The reddish-brown product on the O.D. surface of the pipe was likely soil that had migrated through the splits in the coating of the pipe. Some of the products may also have been from corrosion of the pipe, although it should be stressed that there was no evidence of significant localized or pitting corrosion on the received sections of pipe. The results of the EDS analysis of the products on the O.D. surface of the pipe are recorded in Table 19.

3.13.4 The viscous black bitumen, or coal-tar, coating that was on the O.D. surface of the pipe underneath the layer of fibrous coating was also analyzed using the EDS test method. The results of the test are displayed in the following table.

	Black Bitumen
Element (wt%)	Coating
Magnesium	4.522
Aluminum	6.942
Silicon	42.773
Sulfur	65.763
Silver	0.000

No specific chemical composition of the coating was available for comparison. Bitumen is a highly viscous mixture composed primarily of highly condensed polycyclic aromatic hydrocarbons that is used as a waterproof coating for buried pipe, among other uses such as paving roads. The results of the EDS analysis of the viscous black coating on the O.D. surface of the pipe are recorded in Table 20.

- 4.0 CONCLUSION
- 4.1 Technical Causes of Failure

Based on the inspection, testing, and evaluation performed in accordance with the approved metallurgical test protocol, review of the background information, and technical research, the following is HurstLab's opinion. The failure of the pipeline at Milepost 314.77 in the Conway to Corsicana section of the Pegasus crude oil pipeline located in Mayflower, Arkansas, which occurred at 2:37 pm CST on March 29, 2013, resulted because of the reduction of the wall thickness in the upset zone of the Electric Resistance Weld (ERW) seam caused by the presence of manufacturing defects, namely the upturned bands of brittle martensite, combined with localized stress concentrations at the tips of the hook cracks, low fracture toughness of the material in the upset/HAZ, excessive residual stresses in the pipe from the initial forming and seam and girth welding processes, and the internal pressure creating hoop stresses.

The hook cracks, with maximum dimensions of 0.0038" in width, 0.150" in depth, and 13-1/4" in length, as measured on the examined section of the fracture surface, were present in the ERW seam prior to the incident for an unknown period of time. The weak upturned fibers or bands of untempered brittle martensite were created during the manufacturing of the pipe. The presence of the tightly adhered scale or oxidation products on the fracture faces of the hook cracks suggests that the hook cracks had been present for an unknown period of time. It is unclear, however, whether the hook cracks occurred immediately after manufacturing or during service. The hook cracks initiated and followed the brittle upturned grain flow lines or bands that were created during the manufacturing of the pipe due to effects of the stresses induced by hydrostatic testing, thermal stresses, residual stresses, and/or pressure cycles.

The hook cracks may not have all occurred simultaneously, as suggested by variation in coloration of the scale or oxides on the fracture surface and the macroscopic features of the fracture. The hook cracks and potential microcracks in the upset/heat-affected zones may have then merged due to stresses during service.

4.2 Failure Scenario

Based on the preceding conclusion, the evidence of the hook cracks through multiple ductile and brittle zones, significant variance in hardness between the various zones of the ERW seam, the tightness and depth of the hook cracks along multiple planes through the upset heat-affected zones, and the extremely low impact toughness and elongation properties across the ERW seam, it is highly probable that some micro-cracking within the upset/heat-affected zones might have occurred immediately following the pipe manufacturing. The micro-cracks then likely would have merged by further cracking through the adjacent areas in the localized upset/HAZ zones during service, forming a continuous hook crack in each of the localized areas to the critical depths, at which point the remaining wall thickness, combined with the localized stress concentration and the residual stresses, could no longer support the internal hoop stresses and resulted in the final failure.

Submitted by,

Madhani

Mahesh J. Madhani Chief Metallurgist

Revised on July 9, 2013 to clarify the findings and to make editorial changes.

W:\1H.M.R.L.\1REPORTS\EXXONMOBIL PIPELINE COMPANY.64961, REV. 1.RLC

MP314.77 MP-314.77 3/29/13 Leak Site NIStarlite Ro

Photograph No. 1

The photographs provided by EMPCo of the 20" O.D. x 0.312" wall pipe at Milepost 314.77 of the Conway to Corsicana Pegasus crude oil pipeline, which failed on Friday, March 29, 2013 at 2:47 pm CST in Mayflower, Arkansas, display a straight, linear crack at approximately the 12:00 o'clock position.

Photograph No. 2

Photograph No. 3

The photographs display close-up views of the crack tips near the north girth weld in the ERW seam of the pipe and the south end in the base metal, respectively.

Photograph No. 4

Photograph No. 5

The photographs display the fractured section of the pipe in the as-received condition and following removal of the outer protective wrapping material.

Photograph No. 6

The photograph displays the intact section of the pipe in the as-received condition with the outer protective wrapping material.

The photograph displays the intact section of the pipe following removal of the 2^{nd} protective wrapping material.

Photograph No. 8

The photograph displays the fractured pipe section following removal of the 2^{nd} wrapping material, revealing the fracture faces coated with grease to protect from post-incident corrosion.

Photograph No. 9

The photograph displays the intact section of the pipe following removal of the 1^{st} protective wrapping material.

Photograph No. 10

Photograph No. 11

	As-received Condition of the Coating					
	Circumferential	Distance from	Split Width	Split Depth		
Location North Gi		North Girth Weld	Maximum	Maximum		
	-3' to 0'	1"	-			
	10:30 0 Clock to 1:30 0 Clock	0' to 4'	2"	0.10"		

The photographs display overall top views of the pipe adjacent to the fractured pipe from approximately 3' north of the north girth weld (-3') to the center of the north girth weld (0'), and the fractured pipe from the center of the girth weld to 4' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The fracture in the pipe along the ERW seam terminated at the north girth weld. The fracture was extremely tight at the girth weld but was measured to be approximately 13/16" in width approximately 4' south of the north girth weld. Relatively narrow longitudinal and transverse splits were present in the coating. The coating had been removed from the adjacent intact pipe prior to sectioning approximately 3' north of the north girth weld.

Photograph No. 12

Photograph No. 13

	As-received Condition of the Coating					
	Circumferential	Distance from	Split Width	Split Depth		
	Location	North Girth Weld	Maximum	Maximum		
	4' to 8'	0.5"	0.14"			
	10:30 0 Clock to 1:30 0 Clock	8' to 12'	0.5"	-		

The photographs display overall top views of the fractured pipe from 4' south to 8' south of the north girth weld, and from 8' south to 12' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. Longitudinal and transverse splitting is present in the coating, and some of the coating is missing on either side of the fracture.

Photograph No. 14

Photograph No. 15

	As-received Condition of the Coating				
	Circumferential	Distance from	Split Width	Split Depth	
Location		North Girth Weld	Maximum	Maximum	
10.20 -2-1-1-4-1-20 -2-1-1		12' to 16'	- 0.07"		
	10:30 0 Clock to 1:30 0 Clock	16' to 20'	0.25"	0.09"	

The photographs display overall top views of the fractured pipe from 12' south to 16' south of the north girth weld, and from 16' south to 20' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. Longitudinal and transverse splitting is present in the coating, and some of the coating is missing on either side of the fracture.

Photograph No. 16

Photograph No. 17

As-received Condition of the Coating				
Circumferential	Distance from	Split Width	Split Depth	
Location	North Girth Weld	Maximum	Maximum	
10.20 -2-1-1- +- 1.20 -2-1-1-	20' to 24'	0.5"	0.10"	
10:30 o'clock to 1:30 o'clock	24' to 28'	1.5"	0.10"	

The photographs display overall top views of the fractured pipe from 20' south to 24' south of the north girth weld, and from 24' south to 28' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. At approximately 22' south of the girth weld, the fracture in the ERW seam turned into the pipe material, progressing several inches prior to terminating. The damaged area of coating near the pipe fracture extended longitudinally past the fracture tip several feet.

Photograph No. 18

Photograph No. 19

As-received Condition of the Coating				
Circumferential	Distance from	Split Width	Split Depth	
Location	North Girth Weld	Maximum	Maximum	
10.20 - 2-11 1.20 - 2-11-	28' to 31'	1"	0.05"	
10:30 0 Clock to 1:30 0 Clock	31' to 35'	1"	0.15"	

The photographs display overall top views of the fractured pipe from 28' south to 31' south of the north girth weld, and from 31' south to 35' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The approximately 49' 9-1/2'' long pipe was sectioned in the field transversely approximately 31' south of the north girth weld. The coating was removed in the field approximately 13'' in either direction from the transverse cut prior to sectioning.

Photograph No. 20

Photograph No. 21

As-received Condition of the Coating				
Circumferential	Distance from	Split Width	Split Depth	
Location	North Girth Weld	Maximum	Maximum	
	35' to 39'	1"	0.10"	
10:30 o clock to 1:30 o clock	39' to 43'	0.75"	0.11"	

The photographs display overall top views of the fractured pipe from 35' south to 39' south of the north girth weld, and from 39' south to 43' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. Longitudinal splitting is visible on the surface of the coating.

Photograph No. 22

Photograph No. 23

As-received Condition of the Coating				
Circumferential	Distance from	Split Width	Split Depth	
Location	North Girth Weld	Maximum	Maximum	
	43' to 47'	0.5"	0.11"	
10:30 o'clock to 1:30 o'clock	47' to 51'	1 "	-	

The photographs display overall top views of the fractured pipe from 43' south to 47' south of the north girth weld, and from 47' south to 51' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. Longitudinal splitting is visible on the surface of the coating. Some of the coating had been removed from the adjacent area pipe prior to sectioning.

Photograph No. 24

Photograph No. 25

The photographs display overall views of the west side of the pipe from 7:30 to 10:30 o'clock, adjacent to the fractured pipe from approximately 3' north of the girth weld (-3') to the center of the north girth weld (0'), and the fractured pipe from the center of the girth weld to 4' south of the north girth weld (+4'), respectively, in the as-received condition prior to removing the coating. The lower half of the pipe contains disbonded and wrinkled coating.

The photograph displays an overall view of the west side from 7:30 to 10:30 of the fractured pipe from 4' south to 8' south of the north girth weld in the as-received condition prior to removing the coating. The lower half of the pipe contains disbonded and wrinkled coating, and some openings in the coating are present where the coating had begun to sag.

Photograph No. 27

Photograph No. 28

The photographs display overall views of the west side between 7:30 and 10:30 of the fractured pipe from 12' south to 16' south of the north girth weld, and from 16' south to 20' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The lower half of the pipe contains disbonded and wrinkled coating, along with some openings in the coating.

Photograph No. 29

Photograph No. 30

The photographs display overall views of the west side from 7:30 to 10:30 of the fractured pipe from 20' south to 24' south of the north girth weld, and from 24' south to 28' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The lower half of the pipe contains disbonded and wrinkled coating.

Photograph No. 31

Photograph No. 32

The photographs display overall views of the west side from 7:30 to 10:30 of the fractured pipe from 28' south to 31' south of the north girth weld, and from 31' south to 35' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The pipe had been sectioned transversely approximately 31' south of the north girth weld. The lower half of the pipe contains disbonded and wrinkled coating.

Photograph No. 33

Photograph No. 34

The photographs display overall views of the west side between 7:30 and 10:30 of the fractured pipe from 35' south to 39' south of the north girth weld, and from 39' south to 43' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The lower half of the pipe contains disbonded and wrinkled coating.

Photograph No. 35

Photograph No. 36

The photographs display overall views of the west side from 7:30 to 10:30 of the fractured pipe and adjacent intact pipe from 43' south to 47' south of the north girth weld, and from 47' south to 51' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating had been removed from the adjacent intact pipe prior to allow for sectioning. The lower half of the pipe contains disbonded and wrinkled coating.

Photograph No. 37

Photograph No. 38

The photographs display overall bottom views of the pipe from 4:30 to 7:30 o'clock adjacent to the fractured pipe from approximately 3' north of the north girth weld (-3') to the center of the north girth weld (0'), and the fractured pipe from the center of the north girth weld to 4' south of the north girth weld (+4'), respectively, in the as-received condition prior to removing the coating. The coating had been removed from the adjacent intact pipe prior to sectioning in the field. The coating on the lower half of the pipe is sagging and contains wrinkles.

Photograph No. 39

The photographs display overall bottom views of the fractured pipe from 4:30 to 7:30 from 4' south to 8' south of the north girth weld, and from 8' south to 12' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating on the lower half of the pipe is sagging and contains wrinkles.

Photograph No. 41

The photographs display overall bottom views of the fractured pipe from 4:30 to 7:30 from 12' south to 16' south of the north girth weld, and from 16' south to 20' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating on the lower half of the pipe contains wrinkles and has sagged.

Photograph No. 43

The photographs display overall bottom views of the fractured pipe from 4:30 to 7:30 from 20' south to 24' south of the north girth weld, and from 24' to 28' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating on the lower half of the pipe contains a significant amount of wrinkles and has sagged quite a bit.

Photograph No. 45

Photograph No. 46

The photographs display overall bottom views of the fractured pipe from 4:30 to 7:30 from 28' south to 31' south of the north girth weld, and from 31' south to 35' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The fractured pipe was sectioned transversely approximately 31' south of the north girth weld into two sections.

Photograph No. 47

The photographs display overall bottom views of the fractured pipe from 4:30 to 7:30 from 35' south to 39' south of the north girth weld, and from 39' south to 43' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating on the lower half of the pipe had sagged quite a bit and contains a significant amount of wrinkles.

Photograph No. 49

The photographs display overall bottom views of the fractured pipe from 4:30 to 7:30 and the adjacent intact pipe from 43' south to 47' south of the north girth weld, and from 47' south to 51' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating on the lower half of the pipe contains a significant amount of wrinkles. The coating on the lower half of the pipe contains wrinkles.

Photograph No. 51

Photograph No. 52

The photographs display overall views of the east side of a pipe from 1:30 to 4:30 adjacent to the fractured pipe from approximately 3' north of the north girth weld (-3') to the center of the north girth weld (0'), and the fractured pipe from the center of the north girth weld to 4' south of the north girth weld (+4'), respectively, in the as-received condition prior to removing the coating. The lower half of the pipe contains wrinkled coating.

Photograph No. 53

Photograph No. 54

The photographs display overall views of the east side of the fractured pipe from 1:30 to 4:30 from 4' south to 8' south of the north girth weld, and from 8' south to 12' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The lower half of the pipe contains sagging and wrinkled coating.

Photograph No. 55

Photograph No. 56

The photographs display overall views of the east side of the fractured pipe from 1:30 to 4:30 from 12' south to 16' south of the north girth weld, and from 16' south to 20' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The lower half of the pipe contains sagging and wrinkled coating.

Photograph No. 57

Photograph No. 58

The photographs display overall views of the east side of the fractured pipe from 1:30 to 4:30 from 20' south to 24' south of the north girth weld, and from 24' south to 28' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating on the lower half of the pipe contains sagging and wrinkles.

Photograph No. 59

Photograph No. 60

The photographs display overall views of the east side of the fractured pipe from 1:30 to 4:30 from 28' south to 31' south of the north girth weld, and from 31' south to 35' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The lower half of the pipe contains sagging and wrinkled coating.

Photograph No. 61

Photograph No. 62

The photographs display overall views of the east side of the fractured pipe from 1:30 to 4:30 from 35' south to 39' south of the north girth weld, and from 39' south to 43' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating on the lower half is wrinkled and sagging.

Photograph No. 63

Photograph No. 64

The photographs display overall views of the east side of the fractured pipe from 1:30 to 4:30 and adjacent intact pipe from 43' south to 47' south of the north girth weld, and from 47' south to 51' south of the north girth weld, respectively, in the as-received condition prior to removing the coating. The coating had been removed from the adjacent intact pipe prior to sectioning. The coating on the lower half of the pipe is wrinkled and sagging.

Photograph No. 65

Photograph No. 66

Circumferential	Distance from	Depth o	f Corrosio	n Pitting
Location	North Girth Weld	Minimum	Average	Maximum
A11	-3' to 0'	No Corro	osion Pittir	ng Visible
7:26 o'clock to 10:07 o'clock	0' to 4'	0.006"	0.017"	0.029"

The photographs display overall views of the west side of the pipe adjacent to the fractured area of the pipe, from approximately 3' north of the north girth weld (-3') to the center of the girth weld (0'), and the fractured pipe from the center of the girth weld to 4' south of the girth weld (+4'), respectively, after the removal of the coating. The lower half of the pipe shows corrosion pitting on the O.D. surface where the coating had wrinkled and sagged.

Photograph No. 67

Photograph No. 68

Circumferential	Distance from	Depth o	of Corrosio	n Pitting
Location	North Girth Weld	Minimum	Average	Maximum
6:41 o'clock to 10:07 o'clock	4' to 8'	0.002"	0.013"	0.037"
7:03 o'clock to 11:16 o'clock	8' to 12'	0.002"	0.011"	0.026"

The photographs display overall views of the west side of the fractured pipe from 4' south to 8' south of the north girth weld, and 8' south to 12' south of the north girth weld, respectively, after the removal of the coating. The lower half of the pipe shows corrosion pitting on the O.D. surface where the coating had wrinkled and sagged.

Photograph No. 69

Photograph No. 70

Circumferential	Distance from	Depth o	f Corrosio	n Pitting
Location	North Girth Weld	Minimum	Average	Maximum
6:29 o'clock to 9:55 o'clock	12' to 16'	0.003"	0.017"	0.031"
6:52 o'clock to 10:07 o'clock	16' to 20'	0.006"	0.012"	0.021"

The photographs display overall views of the west side of the fractured pipe from 12' south to 16' south of the north girth weld, and 16' south to 20' south of the north girth weld, respectively, after the removal of the coating. The lower half of the pipe shows corrosion pitting on the O.D. surface where the coating had wrinkled and sagged.

Photograph No. 71

Photograph No. 72

Circumferential	Distance from	Depth o	f Corrosio	n Pitting
Location	North Girth Weld	Minimum	Average	Maximum
7:15 o'clock to 9:55 o'clock	20' to 24'	0.005"	0.010"	0.021"
A11	24' to 28'	No Corrosion Pitting Visible		ng Visible

The photographs display overall views of the west side of the fractured pipe from 20' south to 24' south of the north girth weld, and 24' south to 28' south of the north girth weld, respectively, after the removal of the coating. The lower half of the pipe shows corrosion pitting on the O.D. surface where the coating had wrinkled and sagged.

Photograph No. 73

Circumferential	Distance from	Depth o	f Corrosion	n Pitting
Location	North Girth Weld	Minimum	Average	Maximum
A11	28' to 31'	No Corro	osion Pittin	g Visible

The photograph displays an overall view of the west side of the fractured pipe from 28' south to 31' south of the north girth weld, respectively, after the removal of the coating. The fractured pipe was sectioned in the field transversely approximately 31' south of the north girth weld to allow for removal of the fractured section of pipe. No corrosion pitting is visible on the O.D. surface near the transverse cut at the south end of the fractured section of the pipe.

Photograph No. 74

Circumferential Location	Distance from North Girth Weld
A11	-3' to 0'
A11	0' to 4'

Depth of Corrosion Pitting Minimum | Average | Maximum No Corrosion Pitting Visible No Corrosion Pitting Visible

The photographs display overall views of the east side of the pipe adjacent to the fractured pipe from approximately 3' north of the girth weld (-3') to the center of the north girth weld (0'), and the fractured pipe from the center of the girth weld to 4' south of the north girth weld (+4'), respectively, after the removal of the coating. No corrosion pitting is visible on the O.D. surfaces on the fractured or intact pipe around the north girth weld.

Photograph No. 76

Photograph No. 77

Circumferential	Distance from	Depth o	of Corrosio	n Pitting
Location	North Girth Weld	Minimum	Average	Maximum
1:31 o'clock to 3:03 o'clock	4' to 8'	0.008"	0.013"	0.026"
3:49 o'clock to 4:57 o'clock	8' to 12'	0.004"	0.011"	0.022"

The photographs display overall views of the east side of the fractured pipe from 4' south to 8' south of the north girth weld, and 8' south to 12' south of the north girth weld, respectively, after the removal of the coating. The lower half of the pipe shows corrosion pitting on the O.D. surface where the coating had wrinkled and sagged.

Photograph No. 78

Photograph No. 79

Circumferential	Distance from	Depth o	f Corrosio	n Pitting
Location	North Girth Weld	Minimum	Average	Maximum
3:03 o'clock to 4:57 o'clock	12' to 16'	0.003"	0.013"	0.033"
2:40 o'clock to 5:20 o'clock	16' to 20'	0.005"	0.015"	0.031"

The photographs display overall views of the east side of the fractured pipe from 12' south to 16' south of the north girth weld, and 16' south to 20' south of the north girth weld, respectively, after the removal of the coating. The lower half of the pipe shows corrosion pitting on the O.D. surface where the coating had wrinkled and sagged.

Photograph No. 80

Photograph No. 81

Circumferential	Distance from	Depth o	of Corrosion	n Pitting
Location	North Girth Weld	Minimum	Average	Maximum
2:40 o'clock to 4:57 o'clock	20' to 24'	0.004"	0.020"	0.033"
All	24' to 28'	No Corro	osion Pittir	ng Visible

The photographs display overall views of the east side of the fractured pipe from 20' south to 24' south of the north girth weld, and 24' south to 28' south of the north girth weld, respectively, after the removal of the coating. The lower half of the pipe shows corrosion pitting on the O.D. surface where the coating had wrinkled and sagged.

Photograph No. 82

C	ircumferential
	Location
	A11

Distance from North Girth Weld 28' to 31' Depth of Corrosion Pitting Minimum | Average | Maximum No Corrosion Pitting Visible

The photograph displays an overall view of the east side of the fractured pipe from 28' south of the north girth weld to 31' south of the north girth weld, respectively, after the removal of the coating. No corrosion pitting was visible on the O.D. surface near the transverse cut at the south end of the fractured section of the pipe.

Photograph No. 83

The photographs display representative areas of the I.D. surface at an intact area of the pipe, showing the smooth, shallow impressions that resulted from mechanical damage, most likely during the hot-rolling of the steel or manufacturing of the pipe. No evidence of corrosion pitting was observed on the I.D. surface.

The photograph shows the displacement of the pipe by approximately 2-31/32" following sectioning through the intact portion of the adjoining pipe, indicative of the presence of significant residual stress.

Photograph No. 86

The photographs display overall and close-up views of the 33' 11-1/2" long section of a fractured 20" O.D. x 0.312" wall pipe, which was removed from the Conway to Corsicana section of the Pegasus Crude Oil Pipeline at Milepost 314.77 in Mayflower, Arkansas.

Photograph No. 87

The photographs display overall and close-up views of one of the mating fracture faces from where the final rupture had occurred, resulting in the leakage of crude oil on March 29, 2013. The fractographs show the presence of hook cracks adjacent to the fusion line near the O.D. surface along the ERW seam, between a distance of 19' 10" and 21' 6-1/4" from the north girth weld, and radial lines emanating from the ends of the hook cracks as well as chevron marks revealing the crack propagation direction, which is denoted by the arrows.

Photograph No. 88

The photograph displays the presence of manufacturing imperfections that were found between a distance of 1/4" and 2' 2" from the north girth weld in the path of the final fracture.

Photograph No. 89

The photographs display evidence of manufacturing imperfection, i.e. the upturned bands near the O.D. in the fracture path of the final fracture.

Photograph No. 91

The photographs display the continuation of the manufacturing imperfections in the path of the final fracture.

Photograph No. 93

The photographs display evidence of chevron marks pointing downstream toward the fracture origins. The arrows point to some of the fine chevrons.

Photograph No. 96

The photographs display the O.D. and I.D. surfaces of a section of the pipe that was removed between a distance of 18' 10" and 22' as measured from the north girth weld and which contained hook cracks along the ERW seam, from where the final failure initiated on March 29, 2013.

Photograph No. 97

Photograph No. 98

The photographs display close-up views of the fracture face between a distance of 18' 10" and 19' 4" from the north girth weld of the pipe section, showing faint evidence of chevrons pointing toward the right (south end) near the fracture origins.

Photograph No. 99

Photograph No. 100

The photographs display close-up views of the fracture face between a distance of 19' 4" and 19' 10" from the north girth weld of the pipe section, showing chevrons pointing toward the right (south end) near the fracture origins. The arrow in Photograph No. 100 points to the beginning of the hook cracks.

Photograph No. 101

Photograph No. 102

The photographs display close-up views of the fracture face between a distance of 19' 10" and 20' 4" from the north girth weld, showing radial lines, marked by the blue arrows, which originated from hook cracks through the grain flow or banding formed during manufacturing the ERW seam.

Photograph No. 103

The photograph displays a close-up view of the fracture face between a distance of 20' 4" and 20' 8" from the north girth weld, showing vertical radial lines emanating from the hook cracks, which are marked by the blue arrows, indicating the primary fracture initiation sites which resulted in the 22' 3" long fracture along the ERW seam of the 49' 9-1/2" long pipe.

Photograph No. 104

Photograph No. 105

The photographs display close-up views of the fracture face between a distance of 20' 8" and 21' 1" from the north girth weld, showing radial lines emanating from the hook cracks, marked by the blue arrow, and chevrons pointing to the cracks, revealing some of the final fracture origins.

Photograph No. 106

Photograph No. 107

Photograph No. 108

The photographs display close-up views of the fracture face between a distance of 21' 1" and 21' 10" from the north girth weld showing radial lines emanating from the hook cracks. The blue arrows point to the radial lines, indicative of some of the final fracture initiation sites.

Photograph No. 109

Photograph No. 110

The photographs display close-up views of the fracture face between a distance of 21' 10" and 22' from the north girth weld, showing the final fracture which terminated in the base metal of the pipe, diagonally to a distance of approximately 3".

Photograph No. 111

Photograph No. 112

The photographs display the O.D. and I.D. surfaces adjacent to one of the mating fracture faces which contained multiple hook cracks. The arrow points to an area where the coating was apparently damaged prior to the incident.

Photograph No. 113

The photographs of the outside surface of the fractured ERW seam at a distance between 20' 4-1/2" and 20' 6" from the north girth weld show evidence of what appears to be crack or melting caused by copper electrode contacts during the ERW seam fabrication. The arrows point to these imperfections.

Photograph No. 115

The photographs display close-up views of the copper electrode contact marks in the heat-affected zone of the ERW seam, at the arrow, on the O.D. surface and the presence of copper.

Photograph No. 117

Photograph No. 118

The photographs display the mating fracture faces between a distance of approximately $20' 2 \cdot 1/2"$ and 20' 8" from the north girth weld, revealing hook cracks in the heat-affected zone of the ERW seam to a maximum depth of 0.150" as measured from the O.D. surface, and vertical lines emanating from the tips of the hook cracks, indicative of the final fracture origin sites.

Photograph No. 120

The photographs display the mating fracture faces revealing some of the fracture origin site(s) at a distance of approximately 20' 5-5/16" from the north girth weld, which were later examined at higher magnifications using a Scanning Electron Microscope (SEM) to characterize the fracture morphologies.

Photograph No. 122

The photographs display the mating fracture faces revealing some of the fracture origin sites at a distance between 20' 5-3/4" and 20' 7-1/2" from the north girth weld, which were later examined at higher magnifications using an SEM to characterize the fracture morphologies.

The SEM fractograph taken of one of the final fracture origin sites at a distance of 20' 5-5/16'' from the north girth weld shows an hook crack and the final fracture zone. The fracture locations within the rectangles were examined at high magnifications to further characterize the fracture morphologies. The dotted line denotes the transition zone between the hook cracks and the final fracture.

Area-A Photograph No. 124

The SEM fractograph taken of the Area-A of the hook crack near the O.D. surface, as displayed in Photograph No. 123, displays essentially a nondescript featureless fracture surface. Note the absence of any fracture features, likely due to the metal-to-metal contact from the mating fracture faces of the crack and post-crack oxidation. The fracture locations labeled as Location-1A and Location-1B were examined at higher magnifications to further characterize the fracture morphology.

Area-A, Location-1A Photograph No. 125

Area-A, Location-1B Photograph No. 126

The SEM fractographs of the two (2) fracture locations labeled as Location-1A and Location-1B in Area-A of the hook crack zone near the O.D. display tightly adhered oxidation product, suggesting that the crack had occurred some time prior to the final fracture.

Area-B Photograph No. 127

The SEM fractograph taken of the Area-B of the hook crack zone, as displayed in Photograph No. 123, reveals a nondescript, featureless fracture surface. The fracture location labeled as Location-2A was examined at higher magnification to further characterize the fracture morphology.

Area-B, Location-2A Photograph No. 128

The SEM fractograph taken of the Area-B at Location-2A of the hook crack zone, as displayed in Photograph No. 127, reveals tightly adhered oxidation product on the fracture surface.

Area-C Photograph No. 129

The SEM fractograph taken of the Area-C of the hook crack zone, as displayed in Photograph No. 123, reveals a nondescript, featureless fracture surface. The fracture locations, labeled as Location-3A, Location-3B, Location-3C, and Location-3D, were examined at higher magnifications to further characterize the fracture morphologies.

Area-C, Location-3A Photograph No. 130

Area-C, Location-3B Photograph No. 131

The SEM fractographs taken of the Area-C at Location-3A and Location-3B of the hook crack zone, as displayed in Photograph No. 129, reveal tightly adhered oxidation product.

Area-C, Location-3C Photograph No. 132

Area-C, Location-3D Photograph No. 133

The SEM fractographs taken of the Area-C at Location-3C and Location-3D of the hook crack zone, as displayed in Photograph No. 129, reveal tightly adhered oxidation product.

Area-D Photograph No. 134

The SEM fractograph taken of the Area-D of the hook crack zone, as displayed in Photograph No. 123, reveals a nondescript, featureless fracture surface. The fracture location within the rectangle was examined at a higher magnifications to characterize the fracture morphology.

Area-D within the rectangle Photograph No. 135

The SEM fractograph taken of the Area-D within the rectangle of the hook crack zone, as displayed in Photograph No. 134, reveals tightly adhered oxidation product.

Area-E Photograph No. 136

The SEM fractograph taken of the Area-E in the transition zone between the hook crack and the final fracture zones, as displayed in Photograph No. 123, reveals a nondescript, featureless fracture surface. The fracture location labeled as Location-5A was examined at higher magnification to characterize the fracture morphology.

Area-E, Location-5A Photograph No. 137

The SEM fractograph taken of the Area-E at Location-5A displays some evidence of oxidation product in the hook crack and evidence of quasi-cleavage separation in the final fracture zone, indicative of pre-existing crack and final brittle fracture, respectively.

Area-E, Location-5A, Location within rectangle Photograph No. 138

The SEM fractograph taken of the Area-E at Location-5A, as displayed in Photograph No. 137, confirms the oxidation on the hook cracks and the final fracture in the brittle manner.

Area-F Photograph No. 139

The SEM fractograph taken of the Area-F of the final fracture zone, as shown in Photograph No. 123, displays unresolved cleavage separation fracture features and faint evidence of ductile microvoid coalescence.

Area-F, Location-6A Photograph No. 140

The SEM fractograph taken of the Area-F at Location-6A of the final fracture zone confirm the presence of predominantly brittle failure with some isolated areas of ductile failure, as indicated by the presence of cleavage separation and patches of microvoid coalescence, respectively.

Photograph No. 141

The SEM fractograph taken of the several fracture origin sites at a distance of 20' 6-3/4" from the north girth weld shows an hook crack and the final fracture zone. The fracture areas within the rectangles were examined at higher magnifications to further characterize the fracture morphologies.

Area-1 Photograph No. 142

The SEM fractograph taken of the Area-1 of the hook crack fracture zone, as displayed in Photograph No. 141, reveals a highly oxidized fracture surface. The fracture areas, labeled as 1 and 2, were examined at higher magnification to further characterize the fracture morphologies.

Area-1, Location-1 Photograph No. 143

Area-1, Location-2 Photograph No. 144

The SEM fractographs taken of the fracture zones labeled as Location-1 and Location-2 in Area-1 of the hook crack reveal a highly oxidized surface and evidence of what appears to be intergranular fracture in a very small fracture zone, respectively. The intergranular fracture may have resulted along the ferrite grain boundaries.

Area-2 Photograph No. 145

The SEM fractograph taken of the Area-2 of the hook crack, as displayed in Photograph No. 141, reveals the tightly adhered oxidation product. The area within the rectangle was examined at higher magnification to further characterize the fracture morphology.

Area-2, within the rectangle Photograph No. 146

The SEM fractograph taken of the Area-2 within the rectangle in the hook crack, as displayed in Photograph No. 145, reveals a nondescript, featureless fracture surface covered with tightly adhered oxidation product.

Area-3 Photograph No. 147

Area-3 Photograph No. 148

The SEM fractographs taken of the Area-3 of the final fracture zone, as displayed in Photograph No. 141, reveal cleavage separation, indicative of brittle failure.

Area-4 Photograph No. 149

Area-4 Photograph No. 150

The SEM fractographs taken of the Area-4 of the final shear fracture zone at the I.D. of the pipe reveal evidence of microvoid coalescence, indicative of rapid ductile failure.

20' 4-7/8" from the North Girth Weld As-polished, ~25x Photograph No. 151

A composite view of the mating cross-sections removed through the fracture origins area at a distance of 20' 4-7/8" from the north girth weld and prepared for metallographic examination displays evidence of nonmetallic inclusions along the fracture faces and also parallel to the fusion line near the upper half of the pipe wall. Note that the weld flash on the I.D. surface of the pipe was not trimmed off flush with the I.D. surface.

20' 4-7/8" from the North Girth Weld As-polished, ~50x Photograph No. 152

20' 4-7/8" from the North Girth Weld As-polished, ~50x Photograph No. 153

The micrographs display the upturned inclusions essentially parallel to the fusion line in the ERW upset/HAZ area, as well as along the fracture faces. Note that vertically aligned inclusions are one of the main contributing factors to the formation of hook cracks.

20' 4-7/8" from the North Girth Weld As-polished, ~200x Photograph No. 154

20' 4-7/8" from the North Girth Weld As-polished, ~1000x Photograph No. 155

The micrographs display evidence of folds at the O.D. surface at the fusion line, which was apparently not fully fused, and the presence of post-fracture oxidation at the mid-wall area along the hook crack fracture face.

The micrographs display an excessive amount of elongated manganese sulfide inclusions in the diagonal and vertical planes in the upset/HAZ area of the ERW seam. Note the hook crack along and through the realigned inclusions.

20' 4-7/8" from the North Girth Weld As-polished, ~200x Photograph No. 158

The micrographs display the manganese sulfide inclusions in the axial direction of the pipe near the I.D. surface of the ERW, which were not affected by the welding process.

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~20x Photograph No. 159

A composite view of the mating cross-sections removed through the fracture origins area at a distance of 20' 4-7/8" from the north girth weld and prepared for metallographic evaluation shows hook cracks along the brittle upturned bands in the upset/HAZ area, and the final failure from the tip(s) of the hook crack(s). Again, note that the weld flash was not trimmed off flush with the I.D. surface.

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~25x Photograph No. 160

The micrograph displays a hook crack through the upturned bands, which consists of untempered brittle martensite in the upset/HAZ of the ERW seam.

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 161 20' 4-7/8" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 162

The micrographs display the mating fracture faces of hook cracks near the O.D. of the ERW joint. The microstructure consists of grain boundary ferrite and unresolved bainite with some acicular martensite.

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 163

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 164

The micrographs display the mating fracture faces of the hook cracks near the mid-wall of the ERW joint. Note the presence of mix-microstructure in the upset/HAZ of the ERW seam. The upturned bands consist of essentially untempered brittle martensite and the matrix outside of the bands consists of ferrite and unresolved bainite.

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 165 20' 4-7/8" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 166

The micrographs display the mating fracture faces of the final crack near the I.D. of the ERW joint. Note the presence of mix-microstructure in the HAZ of the ERW seam consisting of patches of untempered acicular martensite, grain boundary ferrite, and unresolved bainite.

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 167

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 168

20' 4-7/8" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 169

The micrographs display the microstructure of the material in the upset/HAZ between the O.D. and the mid-wall where the upturned bands were formed during the ERW seam manufacturing, consisting of the untempered brittle martensite in the banded area and essentially grain boundary ferrite and unresolved bainite with some patches of untempered martensite in the non-banded area.

A composite view of the mating cross-sections removed through the fracture origins area at a distance of 20' 6-13/16'' from the north girth weld and prepared for metallographic examination displays evidence of nonmetallic inclusions along the fracture faces, and also parallel to the fusion line near the upper half of the pipe wall. Note that the weld flash on the I.D. surface was not trimmed off flush with the I.D. surface of the pipe.

20' 6-13/16" from the North Girth Weld As-polished, ~50x Photograph No. 171

20' 6-13/16" from the North Girth Weld As-polished, ~50x Photograph No. 172

The micrographs display the upturned inclusions essentially parallel to the fusion line in the ERW upset/HAZ area, as well as along the fracture faces.

20' 6-13/16" from the North Girth Weld As-polished, ~200x Photograph No. 173

20' 6-13/16" from the North Girth Weld As-polished, ~1000x Photograph No. 174

The micrographs display the presence of several manganese sulfide inclusions aligned parallel to the fusion line and evidence of some post-hook crack oxidation along the fracture face near the mid-wall.

The micrographs display an excessive amount of elongated manganese sulfide inclusions aligned in the diagonal and vertical planes in the upset/HAZ area of the ERW seam. Note the hook crack(s) along and through the realigned inclusions.

20' 6-13/16" from the North Girth Weld As-polished, ~200x Photograph No. 176

The micrograph displays the manganese sulfide inclusions in the axial direction of the pipe near the I.D. surface of the ERW, which were not affected by the welding process.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~20x Photograph No. 177

The composite view of the mating cross-sections removed through the fracture origins area at a distance of 20' 6-13/16'' from the north girth weld and prepared for metallographic evaluation shows hook crack(s) following the upturned grains and inclusions in the upset/HAZ area.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~25x Photograph No. 178

The micrograph displays the hook crack(s) following the upturned bands, which consists of untempered brittle martensite.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 179

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 180

The micrographs display the mating faces of the hook crack(s) at the O.D. in the ERW seam. The microstructure consists of grain boundary ferrite and unresolved bainite with some acicular martensite.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 181

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 182

The micrographs display hook crack(s) following the upturned bands of acicular martensite and manganese sulfide inclusions.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 183

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 184

The micrographs display the mating fracture faces of the final fracture near the I.D. of the ERW joint. The microstructure consists of grain boundary ferrite, unresolved bainite, and bands of acicular untempered martensite.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 185

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 186

The micrographs display the evidence of surface decarburization along the O.D. surface near the ERW seam and the presence of copper from the electrode contact during the initial seam welding of the pipe.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 187

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 188

The micrographs display the evidence of surface decarburization along the I.D. surface near the ERW seam.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 189

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 190

The micrographs display one of the contact marks which resulted from the electrical contact between the electrode supplying the welding current and the pipe surface. Note cracks through resolidified metal near the ERW seam within the primary HAZ.

Fusion Line to Base Metal 2% Nital etch, ~25x Photograph No. 191

The micrograph displays the microstructural phases between the fusion line and the base metal of the ERW seam.

Fusion Line 2% Nital etch, ~100x Photograph No. 192

Fusion Line 2% Nital etch, ~100x Photograph No. 193

The micrographs display untempered bainitic/martensitic microstructure at the fusion line of the ERW seam.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 194

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 195

The micrographs of the primary HAZ display mix-microstructure consisting of grain boundary ferrite and untempered acicular martensite.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 196

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 197

The micrographs of the secondary HAZ display essentially the grain boundary ferrite and unresolved pearlite.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 198

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 199

The micrographs of the base metal display the grain boundary ferrite and lamellar pearlite.

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 200

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 201

20' 6-13/16" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 202

The photographs display banded microstructure in the ERW upset area adjacent to the fusion line, consisting of untempered acicular martensite with entrapped ferrite and ferrite with unresolved bainite in the adjacent non-banded matrix.

35' 8-1/2" from the North Girth Weld As-polished, ~25x Photograph No. 203

The micrograph of a cross-section removed from the intact ERW seam at a distance of 35' 8-1/2" from the north girth weld displays an excessive amount of manganese sulfide inclusions, some aligned parallel and diagonal to the fusion line during the seam welding process.

35' 8-1/2" from the North Girth Weld As-polished, ~500x Photograph No. 205

The micrographs display evidence of some oxidation to a shallow depth of 0.0015" in the upset/HAZ.

The micrographs display an excessive amount of manganese sulfide inclusions aligned parallel and diagonal to the fusion line in the upset/HAZ near the O.D. of the ERW seam joint.

35' 8-1/2" from the North Girth Weld As-polished, ~100x Photograph No. 209

The micrographs display an excessive amount of manganese sulfide inclusions aligned parallel and diagonal to the fusion line in the upset/HAZ near the mid-wall of the ERW seam joint.

35' 8-1/2" from the North Girth Weld As-polished, ~100x Photograph No. 211

The micrographs display an excessive amount of manganese sulfide inclusions, many of them aligned parallel and diagonal to the fusion line in the upset/HAZ near the I.D. of the ERW seam joint.

35' 8-1/2" from the North Girth Weld As-polished, ~100x Photograph No. 212

35' 8-1/2" from the North Girth Weld As-polished, ~500x Photograph No. 213

The micrographs display unfused, expelled weld flash near the I.D. of the ERW seam joint.

35' 8-1/2" from the North Girth Weld 2% Nital etch, ~20x Photograph No. 214

The micrograph of the cross-section removed through the intact ERW seam at a distance of 35' 8-1/2" from the north girth weld and prepared for metallographic examination shows upturned as well as downturned bands in the upset/HAZ, with some bands aligned parallel to the fusion line.

35' 8-1/2" from the North Girth Weld 2% Nital etch, ~25x Photograph No. 215

The micrograph displays a composite view of the ERW seam cross-section following etching in a 2% Nital solution revealing some upturned grains parallel to the fusion line.

35' 8-1/2" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 216

35' 8-1/2" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 217

The micrographs display evidence of some oxidation near the O.D. in the upset/HAZ of the ERW seam joint. The microstructure near the O.D. consists of essentially ferrite and pearlite.

35' 8-1/2" from the North Girth Weld 2% Nital etch, ~100x Photograph No. 218

35' 8-1/2" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 219

35' 8-1/2" from the North Girth Weld 2% Nital etch, ~500x Photograph No. 220

The micrographs display untempered brittle martensite in the bands in the upset/HAZ of the ERW seam joint.

As-polished, ~25x Photograph No. 221

Photograph No. 222

The micrographs display the microstructural condition at a representative area of the O.D. surface of the pipe, showing the loss of material due to pitting corrosion and the corrosion products adhered to the surface. The insert photograph shows a higher magnification view of a single corrosion pit. The maximum depth of the corrosion pits at this location measured 0.008".

As-polished, ~25x Photograph No. 223

2% Nital etch, ~25x Photograph No. 224

The micrographs display the microstructural condition at a representative area of the I.D. surface of the pipe, showing one of the shallow indentations observed during the visual examination. Note the uniform layer of partial decarburization on the I.D. surface and the grain flow deformation shown in the insert photograph, both indicating that the shallow depression is due to a mechanical indentation, most likely when the pipe was manufactured, and not corrosion pitting. The impression measured 0.137" wide and 0.005" deep.

As-polished, ~25x Photograph No. 225

2% Nital etch, ~25x Photograph No. 226

The composite micrographs display the microstructural condition at another representative area of the I.D. surface of the pipe, showing one of the shallow indentations observed during the visual examination. Note the uniform layer of partial decarburization on the I.D. surface, indicating that the shallow depression is due to a mechanical indentation, most likely when the pipe was manufactured, and not corrosion pitting. The impression measured 0.189" wide and 0.007" deep.

DATE OF RECEIPT:

P.O. NO.:

April 16, 2013

LABORATORY TEST NO .:

CN0413055

UCG/451007854

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

DIMENSIONAL MEASUREMENTS REPORT

TO:

ExxonMobil Pipeline Company

SPECIFIED MATERIAL: API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD:

Measured using a calibrated and certified micrometer IDENTIFICATION:

33' 11-1/2" long Fractured Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

Circumference Location		I.D. Measurement				
of Measu	urement	Distance from North Girth Weld				
Begins	Ends	-6"	271"	371"		
12:00	6:00	19.352"	19.366"	19.392"		
1:30	7:30	19.463"	19.375"	19.457"		
3:00	9:00	19.353"	19.390"	19.357"		
4:30	10:30	19.365"	19.354"	19.437"		
Calcula of Rou	ted Out ndness	0.111"	0.036"	0.100"		
API 5L, 44 Out-of-Rou	th Edition, Ta ndness Tolera	ble 10, Pipe E ance for Nomi	xcept End nal D = 20"	0.400"		

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL O.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

TESTED BY: elle Micah Montgomery / Laboratory Technician

May 8, 2013

adhami

J. Madhani, Chief Metallurgist Μ.

E REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUL LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. ilac-MR/ RLC

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

DIMENSIONAL MEASUREMENTS REPORT

TO:

ExxonMobil Pipeline Company

SPECIFIED MATERIAL: API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD:

DATE OF RECEIPT: April 16, 2013 P.O. NO.: UCG/451007854 LABORATORY TEST NO.: CN0413055-1

Measured using a calibrated and certified micrometer IDENTIFICATION:

33' 11-1/2" long Fractured Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

Distan North Gi	ce from irth Weld	Wall Th at Crack	ickness (inches)	Distan North Gi	ce from rth Weld	Wall Th at Crack	ickness (inches)	Distan North Gi	ce from rth Weld	Wall Th at Crack	Wall Thickness at Crack (inches)	
(feet)	(inches)	West	East	(feet)	(inches)	West	(East	(feet)	(inches)	West	East	
	40	0.316	0.312		116	0.317	0.313	16	192	0.319	0.315	
	42	0.317	0.317		118	0.317	0.314		194	0.320	0.315	
	44	0.317	0.311	10	120	0.318	0.313		196	0.318	0.314	
	46	0.312	0.311		122	0.316	0.313		198	0.318	0.314	
4	48	0.311	0.312		124	0.317	0.313		200	0.319	0.315	
	50	0.311	0.314		126	0.318	0.314		202	0.319	0.314	
	52	0.316	0.312		128	0.319	0.313	17	204	0.319	0.313	
	54	0.313	0.311		130	0.318	0.314		206	0.319	0.315	
	56	0.313	0.311	11	132	0.317	0.314		208	0.320	0.315	
	58	0.313	0.312		134	0.317	0.314		210	0.319	0.316	
5	60	0.315	0.312		136	0.317	0.314		212	0.320	0.313	
	62	0.313	0.313		138	0.318	0.315		214	0.320	0.313	
	64	0.313	0.312		140	0.318	0.315	18	216	0.319	0.313	
	66	0.313	0.311		142	0.319	0.314		218	0.318	0.315	
	68	0.314	0.311	12	144	0.319	0.315		220	0.318	0.314	
	70	0.314	0.310		146	0.319	0.317		222	0.318	0.313	
6	72	0.315	0.311		148	0.320	0.315		224	0.317	0.315	
	74	0.314	0.312		150	0.320	0.314		226	0.318	0.313	
	76	0.317	0.313		152	0.320	0.314	19	228	0.318	0.313	
	78	0.315	0.313		154	0.320	0.315		230	0.318	0.312	
	80	0.315	0.312	13	156	0.320	0.314		232	0.318	0.313	
	82	0.315	0.314		158	0.321	0.315		234	0.319	0.314	
7	84	0.315	0.312		160	0.319	0.315		236	0.318	0.314	
	86	0.316	0.314		162	0.319	0.313		238	0.316	0.313	
	88	0.314	0.314		164	0.319	0.313	20	240	0.318	0.312	
	90	0.315	0.313		166	0.318	0.313		242	0.317	0.313	
	92	0.316	0.313	14	168	0.319	0.315		244	0.317	0.311	
	94	0.317	0.314		170	0.320	0.316		246	0.316	0.311	
8	96	0.316	0.314		172	0.318	0.315		248	0.316	0.311	
	98	0.315	0.314		174	0.319	0.314		250	0.316	0.311	
	100	0.317	0.314		176	0.318	0.314	21	252	0.317	0.311	
	102	0.316	0.314		178	0.319	0.315		254	0.315	0.312	
	104	0.317	0.314	15	180	0.319	0.313		256	0.316	0.312	
	106	0.317	0.318		182	0.318	0.313		258	0.315	0.312	
9	108	0.315	0.314		184	0.320	0.315		260	0.315	0.313	
	110	0.317	0.315		186	0.320	0.316		262	0.315	0.313	
	112	0.316	0.315		188	0.320	0.315	22	264	0.314	0.311	

*Unable to measure due to geometry of crack tip.

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES. AS APPLICABLE.

TESTED BY n elle Micah Montgomery Laboratory Technician

M. J. Madhani, Chief Metallurgist

E REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUR LETTERS AND REFORTS ARE FOR THE EXCLUSIVE USE OF THE CLENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN YOUL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. REC

April 24, 2013

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

DIMENSIONAL MEASUREMENTS REPORT

тο·

ExxonMobil Pipeline Company

SPECIFIED MATERIAL: API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD:

DATE OF RECEIPT: April 16, 2013 P.O. NO.:

UCG/451007854 LABORATORY TEST NO .:

Measured using an Optical Stereomicroscope and calibrated Image Analysis Software CN0413055 IDENTIFICATION:

 33° 11-1/2" long Fractured Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

	Depth o	f Cracks		Depth of Cracks			Depth of Cracks	
Distance from	Below Surfa	ace (inches)	Distance from	Below Surfa	ace (inches)	Distance from	Below Surfa	ace (inches)
North Girth Weld	O.D.	I.D.	North Girth Weld	O.D.	I.D.	North Girth Weld	O.D.	I.D.
19' 10"	*	*	20' 2"	0.109	*	20' 6"	0.135	*
19' 10-1/8"	0.078	*	20' 2-1/8"	0.102	*	20' 6-1/8"	0.144	*
19' 10-1/4"	0.079	*	20' 2-1/4"	0.104	*	20' 6-1/4"	0.137	*
19' 10-3/8"	0.087	*	20' 2-3/8"	0.093	*	20' 6-3/8"	0.137	*
19' 10-1/2"	0.093	*	20' 2-1/2"	0.104	*	20' 6-1/2"	0.141	0.017
19' 10-5/8"	0.082	*	20' 2-5/8"	0.107	*	20' 6-5/8"	0.141	0.030
19' 10-3/4"	0.098	*	20' 2-3/4"	0.108	*	20' 6-3/4"	0.138	0.030
19' 10-7/8"	0.091	*	20' 2-7/8"	0.116	*	20' 6-7/8"	0.129	0.050
19'11"	0.112	*	20' 3"	0.124	*	20' 7"	0.141	0.029
19' 11-1/8"	0.104	*	20' 3-1/8"	0.124	*	20' 7-1/8"	0.150	0.025
19' 11-1/4"	0.107	*	20' 3-1/4"	0.133	*	20' 7-1/4"	0.148	0.027
19' 11-3/8"	0.105	*	20' 3-3/8"	0.128	*	20' 7-3/8"	0.150	*
19' 11-1/2"	0.113	*	20' 3-1/2"	0.136	*	20' 7-1/2"	0.141	*
19' 11-5/8"	0.107	*	20' 3-5/8"	0.144	*	20' 7-5/8"	0.098	*
19' 11-3/4"	0.102	*	20' 3-3/4"	0.148	*	20' 7-3/4"	0.092	*
19' 11-7/8"	0.092	*	20' 3-7/8"	0.141	*	20' 7-7/8"	0.078	*
20'	0.102	*	20' 4"	0.140	*	20' 8"	0.133	*
20' 1/8"	0.099	*	20' 4-1/8"	0.136	*	20' 8-1/8"	0.138	*
20' 1/4"	0.102	*	20' 4-1/4"	0.142	*	20' 8-1/4"	0.136	*
20' 3/8"	0.101	*	20' 4-3/8"	0.140	*	20' 8-3/8"	0.132	*
20' 1/2"	0.125	*	20' 4-1/2"	0.137	*	20' 8-1/2"	0.131	*
20' 5/8"	0.110	*	20' 4-5/8"	0.140	*	20' 8-5/8"	0.138	*
20' 3/4"	0.109	*	20' 4-3/4"	0.135	*	20' 8-3/4"	0.140	*
20' 7/8"	0.104	*	20' 4-7/8"	0.135	*	20' 8-7/8"	0.133	*
20' 1"	0.094	*	20' 5"	0.133	*	20' 9"	0.111	*
20' 1-1/8"	0.117	*	20' 5-1/8"	0.113	*	20' 9-1/8"	0.140	*
20' 1-1/4"	0.112	*	20' 5-1/4"	0.123	*	20' 9-1/4"	0.078	*
29' 1-3/8"	0.103	*	20' 5-3/8"	0.125	*	20' 9-3/8"	0.091	*
20' 1-1/2"	0.114	*	20' 5-1/2"	0.140	*	20' 9-1/2"	0.086	*
20' 1-5/8"	0.109	*	20' 5-5/8"	0.138	*	20' 9-5/8"	0.085	*
20' 1-3/4"	0.103	*	20' 5-3/4"	0.135	*	20' 9-3/4"	0.074	*
20' 1-7/8"	0.106	*	20' 5-7/8"	0.138	*	20' 9-7/8"	0.079	*

*No hook cracks at this location.

TESTED BY Susan Walrympte-2 Susan Dalrymple-Ely Materials Analyst

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE $REQUIREMENTS \, OF \, THE \, APPLICABLE \, SPECIFICATION(S), \, THE \, HMRL \, Q.A. \, MANUAL,$ FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES. AS APPLICABLE.

han

Chief Metallurgist M. J. Madhani.

E REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE M REQUIREMENTS SPECIFIED IN THE ABOVE REFRENCED ACCEPTANCE CARTERON. OUR LETTERS AND REPORTS ARE POR THE EXCLUSIVE USE OF REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIM RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT PUT PRIOR AGREEMENT. Iac-MR HMPLEOPM P.8 PEV 6

April 26, 2013

Table 3 (Cont'd)

Page 168 of 185 Report No. 64961, Rev. 1

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

DIMENSIONAL MEASUREMENTS REPORT

тο·

ExxonMobil Pipeline Company

SPECIFIED MATERIAL:

API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD:

DATE OF RECEIPT: April 16, 2013 P.O. NO.:

UCG/451007854 LABORATORY TEST NO .:

Measured using an Optical Stereomicroscope and calibrated Image Analysis Software CN0413055 IDENTIFICATION:

33' 11-1/2" long Fractured Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

	Depth o	f Cracks		Depth of Cracks			Depth of Cracks	
Distance from	Below Surfa	ace (inches)	Distance from	Below Surfa	ace (inches)	Distance from	Below Surfa	ace (inches)
North Girth Weld	O.D.	I.D.	North Girth Weld	O.D.	I.D.	North Girth Weld	O.D.	I.D.
20' 10"	0.077	*	21' 3"	0.027	0.057	21' 8"	*	0.068
20' 10-1/8"	0.085	*	21' 3-1/8"	0.031	*	21' 8-1/8"	*	0.078
20' 10-1/4"	0.075	*	21' 3-1/4"	0.052	*	21' 8-1/4"	*	0.079
20' 10-3/8"	0.057	0.081	21' 3-3/8"	0.118	*	21' 8-3/8"	*	0.079
20' 10-1/2"	0.060	0.083	21' 3-1/2"	0.124	0.088	21' 8-1/2"	*	0.085
20' 10-5/8"	0.069	0.091	21' 3-5/8"	0.130	0.094	21' 8-5/8"	*	0.088
20' 10-3/4"	0.064	0.088	21' 3-3/4"	0.130	0.091	21' 8-3/4"	*	0.082
20' 10-7/8"	0.061	0.088	21' 3-7/8"	0.122	0.086	21' 8-7/8"	*	0.092
20' 11"	0.055	*	21' 4"	0.133	0.091	21' 9"	*	0.080
20' 11-1/8"	0.038	*	21' 4-1/8"	0.134	*	21' 9-1/8"	*	0.071
20' 11-1/4"	0.036	*	21' 4-1/4"	0.135	*	21' 9-1/4"	*	0.057
20' 11-3/8"	0.044	*	21' 4-3/8"	0.135	*	21' 9-3/8"	*	*
20' 11-1/2"	*	*	21' 4-1/2"	0.140	*	21' 9-1/2"	*	*
20' 11-5/8"	*	*	21' 4-5/8"	0.138	*	21' 9-5/8"	*	*
20' 11-3/4"	*	*	21' 4-3/4"	0.124	*	21' 9-3/4"	*	*
20' 11-7/8"	*	*	21' 4-7/8"	0.126	*	21' 9-7/8"	*	*
21'	*	*	21' 5"	0.117	*	21' 10"	*	*
21' 1/8"	*	*	21' 5-1/8"	0.112	*	21' 10-1/8"	*	*
21' 1/4"	*	*	21' 5-1/4"	0.133	*	21' 10-1/4"	*	*
21' 3/8"	0.039	*	21' 5-3/8"	0.130	*	21' 10-3/8"	*	*
21' 1/2"	0.029	*	21' 5-1/2"	0.120	*	21' 10-1/2"	*	*
21' 5/8"	0.040	*	21' 5-5/8"	0.112	0.044	21' 10-5/8"	*	*
21' 3/4"	0.016	*	21' 5-3/4"	0.119	0.095	21' 10-3/4"	*	*
21'7/8"	0.028	*	21' 5-7/8"	0.126	0.096	21' 10-7/8"	*	*
21'1"	0.038	*	21' 6"	0.122	0.092	21' 11"	*	*
21' 1-1/8"	0.038	*	21' 6-1/8"	0.107	0.087	21' 11-1/8"	*	*
21' 1-1/4"	0.062	*	21' 6-1/4"	0.106	0.084	21' 11-1/4"	*	*
21' 1-3/8"	0.029	*	21' 6-3/8"	0.110	0.070	21' 11-3/8"	*	*
21' 1-1/2"	0.088	*	21' 6-1/2"	0.112	*	21' 11-1/2"	*	*
21' 1-5/8"	0.077	*	21' 6-5/8"	0.099	*	21' 11-5/8"	*	*
21' 1-3/4"	0.082	*	21' 6-3/4"	0.083	*	21' 11-3/4"	*	*
21' 1-7/8"	0.060	*	21' 6-7/8"	0.089	*	21' 11-7/8"	*	*
21' 2"	0.112	*	21' 7"	0.091	0.046	22"	*	*
21' 2-1/8"	0.110	0.085	21' 7-1/8"	0.092	0.038			
21' 2-1/4"	0.110	0.097	21' 7-1/4"	0.084	0.031			
21' 2-3/8"	0.104	0.098	21' 7-3/8"	0.092	0.039			
21' 2-1/2"	0.103	0.095	21' 7-1/2"	0.096	0.067			
21' 2-5/8"	0.037	0.085	21' 7-5/8"	0.093	0.060			
21' 2-3/4"	0.044	0.080	21' 7-3/4"	0.043	0.065			
21' 2-7/8"	0.037	0.062	21' 7-7/8"	*	0.064			

*No hook cracks at this location.

TESTED BY Susan Walrymple-2 Susan Dalrymple-Ely Materi<u>als Analyst</u>

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE $REQUIREMENTS \, OF \, THE \, APPLICABLE \, SPECIFICATION(S), \, THE \, HMRL \, Q.A. \, MANUAL,$ FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

Chief Metallurgist M. J. Madhani

E REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIA PROPERTES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDERSS REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTIONE CRITERION. OUR LETTERS AND REPORTS ARE FOR THE EXCLUSIVE REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST S RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT.

April 26, 2013

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

DIMENSIONAL MEASUREMENTS OF HOOK CRACKS

TO:

DATE OF RECEIPT:

P.O. NO.:

April 16, 2013

LABORATORY TEST NO .:

CN0413055

UCG/451007854

ExxonMobil Pipeline Company

SPECIFIED MATERIAL: API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD.

Calibrated Image Analysis Software

IDENTIFICATION:

33' 11-1/2" long Fractured Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

	i.
the	Ho
ld	Minimum

Distance from the	Ноо	Hook Cra		
North Gird Weld	Minimum	Average	Maximum	Depth
20' 3-3/4"	0.0008"	0.0013"	0.0023"	0.145"
20' 4-7/8"	0.0018"	0.0028"	0.0038"	0.145"
20' 5-1/2"	0.0006"	0.0016"	0.0031"	0.133"

Note: The maximum hook crack depth where measured on the fracture surface was measured to be 0.150", as recorded in Table 3.

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL O.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

TESTED BY Myers in Clint Myers Staff Metallurgist

May 14, 2013

Madhani

J. Madhani, Chief Metallurgist Μ.

E REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POS. REQUIREMENTS SPECIFIED IN THE ABOVE REPERENCED ACCEPTANCE CRITERION. OUR LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRES REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WI RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. PLE MATERIAL WILL BI

DATE OF RECEIPT:

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

MICROHARDNESS TEST REPORT

ExxonMobil Pipeline Co	April 16, 2013		
SPECIFIED MATERIAL:	1 0	TEST METHOD:	P.O. NO.:
API STD. 5-L, 10 th Edition, An Open Hearth Steel, Grade B, Edition, October 1, 2007, PSI SCALE	ugust 1945, Electric Welded, & ANSI/API Spec. 5L, 44 th L 1, Welded Pipe, Grade X42	ASTM E384-11 ⁶¹	UCG/451007854
Vickers	500 g	Vickers	CN0413055

IDENTIFICATION:

TO:

33' 11-1/2" long Fractured Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948; Test Location: 20' 4-7/8" from the North Girth Weld

Indentation	Test	Hardness,	Conversion to	Indentation	Test	Hardness,	Conversion to
Number	Location	HV500g	Rockwell Scale	Number	Location	HV500g	Rockwell Scale
1	Hardened	549	52 HRC	12		408	42 HRC
2	Upturned	560	53 HRC	13	ERW	492	49 HRC
3	Martensitic	574	54 HRC	14	Line	399	41 HRC
4	Grains	509	50 HRC	15		335	34 HRC
5		279	27 HRC	16		225	97 HRB
6	Hook	285	28 HRC	17		240	20 HRC
7	Crack(s)	308	31 HRC	18	Secondary	226	98 HRB
8		295	29 HRC	19	HAZ	248	22 HRC
9	Final	280	27 HRC	20		240	100 HRB
10	Fracture	298	29 HRC	21		240	100 HRB
11	(Primary HAZ)	280	27 HRC	22	P	206	94 HRB
				23	Base Metal	228	98 HRB
				24	wittai	218	96 HRB

Test was performed using calibrated Wilson Tukon Model 230 Tester, S/N 892214. Rockwell hardness numbers converted from Knoop or Vickers scales are approximations based on ASTM E 140-07 and are typically higher than the hardness values obtained using the actual scale.

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL O.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

TESTED BY: DATE TESTED:

J. E.

6 Eshe

Joseph Eskew, C.W.I., Laboratory Services Manager

THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUR LEITERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. Iac-MR

May 10, 2013

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

MICROHARDNESS TEST REPORT

TO:			DATE OF RECEIPT:
ExxonMobil Pipeline Co	mpany		April 16, 2013
SPECIFIED MATERIAL:		TEST METHOD:	P.O. NO.:
API STD. 5-L, 10th Edition, At			
Open Hearth Steel, Grade B, Edition, October 1, 2007, PS	& ANSI/API Spec. 5L, 44 th L 1, Welded Pipe, Grade X42	ASTM E384-11 $^{\epsilon_1}$	UCG/451007854
SCALE:	LOAD FORCE:	INDENTER:	LABORATORY TEST NO .:
Vickers	500 g	Vickers	CN0413055

IDENTIFICATION:

33' 11-1/2" long Fractured Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948; Test Location: 20' 6-13/16" from the North Girth Weld

Indentation	Test	Hardness,	Conversion to	Indentation	Test	Hardness,	Conversion to
Number	Location	HV500g	Rockwell Scale	Number	Location	HV500g	Rockwell Scale
1	Hardened	483	48 HRC	12		303	30 HRC
2	Upturned	483	48 HRC	13	ERW	342	35 HRC
3	Martensitic	499	49 HRC	14	Fusion Line	330	33 HRC
4	Grains	502	49 HRC	15		299	30 HRC
5		281	27 HRC	16		255	23 HRC
6	Hook	293	29 HRC	17		231	98 HRB
7	Crack(s)	310	31 HRC	18	Secondary	246	22 HRC
8		297	29 HRC	19	HAZ	233	99 HRB
9	Final	338	34 HRC	20		258	24 HRC
10	Fracture	265	25 HRC	21		231	98 HRB
11	(Primary HAZ)	298	29 HRC	22	Ð	223	97 HRB
				23	Base Metal	250	22 HRC
				24	wittai	237	100 HRB

Test was performed using calibrated Wilson Tukon Model 230 Tester, S/N 892214. Rockwell hardness numbers converted from Knoop or Vickers scales are approximations based on ASTM E 140-07 and are typically higher than the hardness values obtained using the actual scale.

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL O.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

TESTED BY: DATE TESTED:

6 Eshe

Joseph Eskew, C.W.I., Laboratory Services Manager

May 10, 2013 J. E. THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUR LEITERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. ilac-MR/

DATE OF RECEIPT:

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

MICROHARDNESS TEST REPORT

ExxonMobil Pipeline Co	April 16, 2013		
SPECIFIED MATERIAL:	1 0	TEST METHOD:	P.O. NO.:
API STD. 5-L, 10 th Edition, Au Open Hearth Steel, Grade B, Edition, October 1, 2007, PS	ugust 1945, Electric Welded, & ANSI/API Spec. 5L, 44 th L 1, Welded Pipe, Grade X42	ASTM E384-11 $^{\epsilon_1}$	UCG/451007854
SCALE:	LOAD FORCE:	INDENTER:	LABORATORY TEST NO .:
Vickers	500 g	Vickers	CN0413055

IDENTIFICATION:

TO:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948; Test Location: 35' 8-1/2" from the North Girth Weld

Indentation	Test	Hardness,	Conversion to	Indentation	Test	Hardness,	Conversion to
Number	Location	HV500g	Rockwell Scale	Number	Location	HV500g	Rockwell Scale
1	Hardened	580	54 HRC	12		334	34 HRC
2	Upturned	586	54 HRC	13	ERW	295	29 HRC
3	Martensitic	391	40 HRC	14	Line	374	38 HRC
4	Grains	444	45 HRC	15		516	50 HRC
5		256	23 HRC	16		237	100 HRB
6		253	23 HRC	17		241	21 HRC
7	Duina anna	276	27 HRC	18	Secondary	228	98 HRB
8	Primary HAZ	269	26 HRC	19	HAZ	253	23 HRC
9	11112	283	28 HRC	20		234	99 HRB
10		241	21 HRC	21		219	97 HRB
11		254	23 HRC	22	P	232	99 HRB
				23	Metal	231	99 HRB
				24	metal	249	22 HRC

Test was performed using calibrated Wilson Tukon Model 230 Tester, S/N 892214. Rockwell hardness numbers converted from Knoop or Vickers scales are approximations based on ASTM E 140-07 and are typically higher than the hardness values obtained using the actual scale.

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL O.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

TESTED BY:

DATE TESTED:

liche

Joseph Eskew, C.W.I., Laboratory Services Manager

May 10, 2013 J. E. THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUR LEITERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. Iac-MR/ HMRL FORM R-5, REV. 6

Page 173 of 185 Report No. 64961, Rev. 1

DATE OF RECEIPT:

P.O. NO.:

April 16, 2013

LABORATORY TEST NO .:

UCG/451007854

PT0413163 - ERW

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

TENSILE TEST REPORT

TO:

ExxonMobil Pipeline Company

SPECIFIED MATERIAL: API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD: Prepared per: API STD. 5-L, 10th Edition, August 1945, Sections 24 - 27, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, Section 10.2.3 and Fig. 5b

Tested per: ASTM A370-12a ACCEPTANCE CRITERION

API STD. 5-L, 10th Edition, August 1945, Table 3, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Table 6, Welded Pipe, Grade X42 IDENTIFICATION:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to

Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

		TEST SPECIMEN DIMENSIONS			ULTIMATE STRESS		(0.5% C	STRESS (FFSET)	%	
SAMPLE NUMBER	SPECIMEN IDENTIFICATION	DIAMETER/ WIDTH, in	THICKNESS, in	AREA, in ²	LOAD, lbf	STRESS, psi	LOAD, lbf	STRESS, psi	ELONG. IN 2"	FRACTURE LOCATION
1	Transverse - ERW	1.503	0.294	0.442	44,754	101,000	34,016	77,000	4	H.A.Z.
2	Seam, Weld	1.501	0.295	0.443	41,394	93,500	34,938	79,000	5	H.A.Z.
3	Flash Included	1.508	0.294	0.443	45,191	102,000	37,194	84,000	23	Base Metal
1	Transverse - ERW	1.509	0.282	0.426	36,353	85,500	31,104	73,000	3	H.A.Z.
2	Seam, Weld	1.509	0.281	0.424	36,341	85,500	31,858	75,000	3	H.A.Z.
3	Flash Removed	1.504	0.281	0.423	39,172	92,500	32,440	77,000	5	H.A.Z.
		ļ.	I	REQU	IREMENTS					
API 5-L, 10 th Edition, Table 3, Electric Welded, Open Hearth Steel, Grade B						60,000 minimum				
API 5L, 44 th Edition, PSL 1, Table 6, Welded Pipe, Grade X42						60,200 minimum				

REMARKS:

TESTED BY

Josh Thomas

Test specimens meet the tensile requirements for API 5L ERW pipe at the time the pipe was manufactured, as well as the current version of API 5L for ERW Pipe, in accordance with the above referenced acceptance criterion.

Transverse tensile test specimens were flattened as per API 5L test methods prior to machining and testing.

Test was performed using Instron Satec Systems tensile machine S/N 1189.

DATE TESTED:

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

Joseph Eskew, C.W.I., Laboratory Services Manager

May 1, 2013 Laboratory Technician THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUL LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. AC-MR HMRI. FORM R.3 REV

Page 174 of 185 Report No. 64961, Rev. 1

DATE OF RECEIPT:

P.O. NO.:

April 16, 2013

LABORATORY TEST NO .:

PT0413163 - T

UCG/451007854

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

TENSILE TEST REPORT

TO:

ExxonMobil Pipeline Company

SPECIFIED MATERIAL: API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD: Prepared per: API STD. 5-L, 10th Edition, August 1945, Sections 24 - 27, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, Section 10.2.3 and Fig. 5b

Tested per: ASTM A370-12a ACCEPTANCE CRITERION

API STD. 5-L, 10th Edition, August 1945, Table 3, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Table 6, Welded Pipe, Grade X42 IDENTIFICATION:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to

Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

SAMPLE NUMBER	SPECIMEN IDENTIFICATION	TEST SPI DIAMETER/ WIDTH, in	ECIMEN DIME	AREA, in ²	ULTIMA LOAD, lbf	TE STRESS	YIELD S (0.5% C LOAD, lbf	STRESS FFSET) STRESS, psi	% ELONG. IN 2"	FRACTURE LOCATION
1	T	1.494	0.296	0.442	38,440	87,000	26,343	59,500	30	
2	90° from	1.503	0.297	0.446	38,628	86,500	26,288	59,000	31	
3	ERW Seam	1.510	0.293	0.442	39,329	89,000	27,386	62,000	28	
1	Transverse -	1.507	0.306	0.461	40,051	87,000	28,967	63,000	28	
2	180° from	1.508	0.307	0.463	39,620	85,500	27,856	60,000	28	
3	ERW Seam	1.501	0.306	0.459	40,254	87,500	29,443	64,000	28	
				REQU	IREMENTS					
API 5-L, 10 th Edition, Table 3, Electric Welded, Open Hearth Steel, Grade B						60,000 minimum		35,000 min.	*	
API 5L, 44 th Edition, PSL 1, Table 6, Welded Pipe, Grade X42						60,200 minimum		42,100 min.	27 min.	

REMARKS:

Test specimens meet the tensile requirements for API 5L ERW pipe at the time the pipe was manufactured, as well as the current version of API 5L for ERW Pipe, in accordance with the above referenced acceptance criterion.

Transverse tensile test specimens were flattened as per API 5L test methods prior to machining and testing.

*The required minimum elongation specified in Table 3 of API STD. 5-L, 10th Edition is illegible on the available paper copy.

Test was performed using Instron Satec Systems tensile machine S/N 1189.

DATE TESTED:

TESTED BY Josh Thomas Laboratory Technician THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

Joseph Eskew, C.W.I., Laboratory Services Manager

May 1, 2013 THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUL LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. HMRL FORM R-3 REV

Page 175 of 185 Report No. 64961, Rev. 1

DATE OF RECEIPT:

P.O. NO.:

April 16, 2013

LABORATORY TEST NO .:

PT0413163 - L

UCG/451007854

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

TENSILE TEST REPORT

ExxonMobil Pipeline Company

TO:

SPECIFIED MATERIAL:

API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD: Prepared per: API STD. 5-L, 10th Edition, August 1945, Sections 24 - 27, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, Section 10.2.3 and Fig. 5b

Tested per: ASTM A370-12a ACCEPTANCE CRITERION

API STD. 5-L, 10th Edition, August 1945, Table 3, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Table 6, Welded Pipe, Grade X42 IDENTIFICATION:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to

Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

		TEST SPECIMEN DIMENSIONS			ULTIMATE STRESS		YIELD STRESS (0.5% OFFSET)		%	
SAMPLE NUMBER	SPECIMEN IDENTIFICATION	DIAMETER/ WIDTH, in	THICKNESS, in	AREA, in ²	LOAD, lbf	STRESS, psi	LOAD, lbf	STRESS, psi	ELONG. IN 2"	FRACTURE LOCATION
1	Longitudinal -	1.504	0.286	0.430	38,346	89,000	27,764	64,500	31	
2	90° from	1.507	0.290	0.437	39,155	90,000	29,107	66,500	31	
3	ERW Seam	1.503	0.294	0.442	40,043	90,500	30,203	68,500	31	
				REQU	IREMENTS					
API 5-L, 10 th Edition, Table 3, Electric Welded, Open Hearth Steel, Grade B						60,000 minimum		35,000 min.	*	
API 5L, 44 th Edition, PSL 1, Table 6, Welded Pipe, Grade X42						60,200 minimum		42,100 min.	27 min.	

REMARKS:

TESTED BY

Josh Thomas

Test specimens meet the tensile requirements for API 5L ERW pipe at the time the pipe was manufactured, as well as the current version of API 5L for ERW Pipe, in accordance with the above referenced acceptance criterion.

*The required minimum elongation specified in Table 3 of API STD. 5-L, 10th Edition is illegible on the available paper copy.

Test was performed using Instron Satec Systems tensile machine S/N 1189.

DATE TESTED:

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

Joseph Eskew, C.W.I., Laboratory Services Manager

May 1, 2013 Laboratory Technician THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUL LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. HMRL FORM R-3 REV

Page 176 of 185 Report No. 64961, Rev. 1

DATE OF RECEIPT:

P.O. NO.:

April 16, 2013

LABORATORY TEST NO .:

PT0413160

UCG/451007854

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

TENSILE TEST REPORT

TO:

ExxonMobil Pipeline Company

SPECIFIED MATERIAL: API STD. 5-L, 10th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD:

Prepared per: API STD. 5-L, 10th Edition, August 1945, Sections 24 - 27, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, Section 10.2.3 and Table 21 Tested per: ASTM A370-12a ACCEPTANCE CRITERION

API STD. 5-L, 10th Edition, August 1945, Table 3, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Table 6, Welded Pipe, Grade X42 IDENTIFICATION:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to

Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

	TEST SP	ECIMEN DIME	INSIONS	ULTIMAT	E STRESS	YIELD STRES	%		
SPECIMEN IDENTIFICATION	DIAMETER/ WIDTH, in	THICKNESS, in	AREA, in ²	LOAD, lbf	STRESS, psi	LOAD, lbf	STRESS, psi	ELONG. IN 2"	% R. IN A.
Transverse - 90° from ERW Seam	0.245	0.300	0.0735	6,326	86,000	4,169	56,500	27	
Transverse - 180° from ERW Seam	0.253	0.307	0.0777	6,492	83,500	4,503	58,000	22	
			REQ	QUIREMENTS	3				
API 5-L, 10 th Edition Open Heart	Electric W Grade B	/elded,		60,000 minimum		35,000 min.	*		
API 5L, 44 th Edition, PSL 1, Table 6, Welded Pipe, Grade X42					60,200 minimum		42,100 min.	27 min.	

*The required minimum elongation specified in Table 3 of API STD. 5-L, 10th Edition is illegible on the available paper copy.

SPECIMEN IDENTIFICATION	TEST SPECIMEN DIMENSIONS DIAMETER/ WIDTH, in THICKNESS, in AREA, in ²			ULTIMA1 LOAD, lbf	TE STRESS STRESS, psi	YIELD STRES	S (0.5% OFFSET) STRESS, psi	% ELONG. IN 2"	% R. IN A.		
Transverse - ERW Seam, Weld Flash Removed	0.245	0.288	0.0732	7,289	99,500	4,765	65,000	21**			
	REQUIREMENTS										
API 5-L, 10 th Edition, Table 3, Electric Welded, Open Hearth Steel, Grade B					60,000 minimum						
API 5L, 44 th Edition, PSL 1, Table 6, Welded Pipe, Grade X42					60,200 minimum						

**Fractured through the base metal.

TESTED BY

Josh Thomas

Transverse tensile test specimens were not flattened.

Test was performed using Instron Satec Systems tensile machine S/N 1189.

DATE TESTED:

SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

Joseph Eskew, C.W.I., Laboratory Services Manager

THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE

May 10, 2013 Laboratory Technician THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUL LEITERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. IAC-MR RLC

HMRL FORM R.3 REV

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

IMPACT TEST REPORT

TO:

A

TE P

TESTED BY

Josh Thomas

Laboratory Technician

E SF

DATE OF RECEIPT:

ExxonMobil Pipeline Company	April 16, 2013
SPECIFIED MATERIAL:	P.O. NO.:
API STD. 5-L, 10 th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B,	
& ANSI/API Spec. 5L, 44 th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42	UCG/451007854
TEST METHOD:	LABORATORY TEST NO .:
Prepared per: ANSI/API Spec. 5L, 44 th Edition, October 1, 2007, Section 9.8	
Tested per: ASTM A370-12a	CI0413062 - ERW
ACCEPTANCE CRITERION:	

ANSI/API Spec. 5L, 44th Edition, October 1, 2007, Section 9.8 and Table 8, PSL 2 Pipe, Grade ≤X60 IDENTIFICATION:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to

Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948 SPECIMEN TYPE: SPECIMEN SIZE TESTED: EFFECTIVE ENERGY: TEST TEMPERATURE:

-lbf/358 Joules	Simple Bea	Vari	ious	10 mm x 5 mm	
TEST	V-NOTCH	IMPACT VALUES FOR	LATERAL E	XPANSION	DECLUDEMENTO
TEMPERATURE	LOCATION	SIZE TESTED, IT-IDI	% Shear	mils 0	REQUIREMENTS
Plus 95°F	ERW Seam Transverse	2	0	1	None Specified
		3	0	0	
		3	0	0	
Plus 80°F	ERW Seam Transverse	2	0	0	None Specified
		3	0	1	
		3	0	1	
Plus 65°F	ERW Seam Transverse	2	0	0	None Specified
		3	0	1	
		3	0	0	
Plus 32°F	ERW Seam Transverse	3	0	0	10 ft-lbf min. average energy 8 ft-lbf min. individual energy
		2	0	0	
	-lbf/358 Joules TEST TEMPERATURE Plus 95°F Plus 80°F Plus 65°F Plus 32°F	-lbf/358 JoulesSimple BeaTEST TEMPERATUREV-NOTCH LOCATIONPlus 95°FERW Seam TransversePlus 80°FERW Seam TransversePlus 65°FERW Seam TransversePlus 65°FERW Seam TransversePlus 32°FERW Seam Transverse	Ibf/358 JoulesSimple Beam, Type ATEST TEMPERATUREV-NOTCH LOCATIONIMPACT VALUES FOR SIZE TESTED, ft-lbfPlus 95°FERW Seam Transverse3Plus 95°FERW Seam Transverse3Plus 80°FERW Seam Transverse3Plus 80°FERW Seam Transverse3Plus 65°FERW Seam Transverse3Plus 65°FERW Seam Transverse3Plus 32°FERW Seam 	Ibf/358 JoulesSimple Beam, Type AVariable ConstraintsTEST TEMPERATUREV-NOTCH LOCATIONIMPACT VALUES FOR SIZE TESTED, ft-lbfLATERAL E % ShearPlus 95°FERW Seam Transverse30Plus 80°FERW Seam Transverse30Plus 80°FERW Seam Transverse30Plus 65°FERW Seam Transverse30Plus 65°FERW Seam Transverse30Plus 65°FERW Seam Transverse30Plus 32°FERW Seam Transverse30Plus 32°FERW Seam Transverse30Plus 32°FERW Seam Transverse30	$ \begin{array}{c c c c c c } & Simple Beam, Type A & Varion \\ \hline TEST TEST TEMPERATURE & V-NOTCH LOCATION & IMPACT VALUES FOR SIZE TESTED, ft-lbf & Model (Marcon Marcon Marco$

Note that the CVN impact requirements are only specified for Type PSL 2 welded pipe, not Type PSL 1 welded pipe. No impact requirements are listed in the ASI STD 5-L, 10th Edition, August 1945.

> THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

6 Eshe

Joseph Eskew, C.W.I., Laboratory Services Manager

THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUR LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. ilac-MRA

DATE TESTED:

May 1, 2013

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

IMPACT TEST REPORT

TO:

TESTED BY

Josh Thomas

Laboratory Technician

DATE OF RECEIPT:

ExxonMobil Pipeline Company	April 16, 2013
SPECIFIED MATERIAL:	P.O. NO.:
API STD. 5-L, 10 th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44 th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD:	UCG/451007854 LABORATORY TEST NO.:
Prepared per: ANSI/API Spec. 5L, 44 th Edition, October 1, 2007, Section 9.8 Tested per: ASTM A370-12a	CI0413062 - HAZ

ANSI/API Spec. 5L, 44th Edition, October 1, 2007, Section 9.8 and Table 8, PSL 2 Pipe, Grade ≤X60 IDENTIFICATION:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to

Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948 SPECIMEN TYPE: EFFECTIVE ENERGY: TEST TEMPERATURE: SPECIMEN SIZE TESTED:

264 ft-	lbf/358 Joules	Simple Beam, Type A		Var	ious	10 mm x 5 mm
	TEST	V-NOTCH	IMPACT VALUES FOR	LATERAL E	XPANSION	
NO.	TEMPERATURE	LOCATION	SIZE TESTED, ft-lbf	% Shear	mils	REQUIREMENTS
1			3	0	3	
2	Plus 95°F	ERW Primary HAZ Transverse	3	0	4	None Specified
3			4	5	6	
1			5	5	7	
2	Plus 80°F	ERW Primary HAZ Transverse	4	5	5	None Specified
3			8	5	5	
1			3	0	2	
2	Plus 65°F	ERW Primary HAZ Transverse	3	0	1	None Specified
3			5	0	2	
1			4	0	0	
2	Plus 32°F	ERW Primary HAZ Transverse	3	0	0	10 ft-lbf min. average energy 8 ft-lbf min. individual energy
3			4	0	0	

Note that the CVN impact requirements are only specified for Type PSL 2 welded pipe, not Type PSL 1 welded pipe. No impact requirements are listed in the ASI STD 5-L, 10th Edition, August 1945.

> THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

6 Eshe

Joseph Eskew, C.W.I., Laboratory Services Manager

THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUR LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. ilac-MRA

DATE TESTED:

May 1, 2013

HURST METALLURGICAL RESEARCH LABORATORY, INC.

2111 West Euless Boulevard (Highway 10), Euless, Texas 76040-6707 Phone (817) 283-4981, Metro 267-3421, Fax: Metro (817) 267-4234 Located in the Dallas/Fort Worth Metroplex

IMPACT TEST REPORT

TO:

DATE OF RECEIPT:

ExxonMobil Pipeline Company	April 16, 2013
SPECIFIED MATERIAL:	P.O. NO.:
API STD. 5-L, 10 th Edition, August 1945, Electric Welded, Open Hearth Steel, Grade B,	
& ANSI/API Spec. 5L, 44 th Edition, October 1, 2007, PSL 1, Welded Pipe, Grade X42 TEST METHOD:	UCG/451007854 LABORATORY TEST NO.:
Prepared per: ANSI/API Spec. 5L, 44 th Edition, October 1, 2007, Section 9,8	
Tested per: ASTM A370-12a	CI0413062 - BM

ACCEPTANCE CRITERION:

TESTED BY

Josh Thomas

Laboratory Technician

ANSI/API Spec. 5L, 44th Edition, October 1, 2007, Section 9.8 and Table 8, PSL 2 Pipe, Grade ≤X60 IDENTIFICATION:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to

Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948 SPECIMEN TYPE: SPECIMEN SIZE TESTED: EFFECTIVE ENERGY: TEST TEMPERATURE:

264 ft-	lbf/358 Joules	Simple Bea	am, Type A	Var	ious	10 mm x 5 mm
	TEST	V-NOTCH	IMPACT VALUES FOR	LATERAL E	XPANSION	
NO.	TEMPERATURE	LOCATION	SIZE TESTED, ft-lbf	% Shear	mils	REQUIREMENTS
1			10	15	16	
2	Plus 95°F	Base Metal Transverse	10	10	12	None Specified
3			10	10	14	
1			9	5	9	
2	Plus 80°F	Base Metal Transverse	9	5	10	None Specified
3			9	5	13	
1			10	5	13	
2	Plus 65°F	Base Metal Transverse	10	5	14	None Specified
3			10	5	13	
1			8	5	8	
2	Plus 32°F	Base Metal Transverse	9	5	12	10 ft-lbf min. average energy 8 ft-lbf min. individual energy
3			9	5	10	
1			5	0	1	
2	0°F	Base Metal Transverse	4	0	2	None Specified
1	Minus 32°F		2	0	0	

Note that the CVN impact requirements are only specified for Type PSL 2 welded pipe, not Type PSL 1 welded pipe. No impact requirements are listed in the ASI STD 5-L, 10th Edition, August 1945.

> THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

DATE TESTED:

May 1, 2013

Liche

Joseph Eskew, C.W.I., Laboratory Services Manager

THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUR LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. ilac-MRA

API STD. 5-L, 10th Edition, August 1945, Table 2, Electric Welded, Open Hearth Steel, Grade B, & ANSI/API Spec. 5L, 44th Edition, October 1, 2007, PSL 1, Table 4, Welded Pipe, Grade X42 TEST METHOD:

ASTM E415-08 IDENTIFICATION:

19' 10" long Intact Section of a 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to

Corsicana Pegasus Crude Oil Pipeline after it Failed in Service in Mayflower, Arkansas; Installed in 1947 to 1948

ELEMENT WEIGHT %	Sample Tested	API 5-L, 10 th Ed., Electric Weld Pipe, Open Hearth Steel, Grade B Spec.	API 5L, 44 th Ed., PSL 1, Welded Pipe, Grade X42 Specification
$Carbon^1$	0.30	0.30 max	0.26 max
Manganese	1.47	0.35 to 1.50	1.30 max
Phosphorus	0.017	0.045 max	0.030 max
Sulfur	0.031	0.06 max	0.030 max
Silicon	< 0.01	2	2
Chromium	< 0.01	2	0.50 max
Nickel	0.04	2	0.50 max
Molybdenum	<0.01	2	0.15 max
Copper	0.02	2	0.50 max
Aluminum	< 0.01	2	2
Niobium	< 0.01	2	3
Vanadium	< 0.01	2	3
Titanium	< 0.01	2	3
Iron REMARKS:	Base	Base	Base

Material analyzed meets the chemical composition requirement for API 5L ERW pipe at the time the pipe was manufactured. However, it does not meet the above referenced current version of API 5L for ERW pipe, in accordance with the above referenced acceptance criterion.

¹Test performed by HurstLab approved supplier and the results are outside the scope of accreditation for tests listed in A2LA Cert. #3152.01 and not covered by this accreditation.

²Analytical range not specified for element.

³Sum of Niobium + Vanadium + Tantalum = 0.15% maximum

Test was performed using Thermo Jarrell Ash AtomComp 81, S/N 26094 Optical Emission Spectrometer with Angstrom S-1000 readout and control system.

TESTED BY: DATE TESTED: Brad Shepard, Chemist May 3, 2013 THIS IS TO CERTIFY THAT THE ABOVE ARE THE ACTUAL RESULTS OF THE SUBMITTED SAMPLE(S) PREPARED AND TESTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE APPLICABLE SPECIFICATION(S), THE HMRL Q.A. MANUAL, FIFTH EDITION AND ITS IMPLEMENTING PROCEDURES, AS APPLICABLE.

Lighe

Joseph Eskew, C.W.I., Laboratory Services Manager

THE REPORTED TEST DATA REFLECTS ONLY THE EVALUATED MATERIAL PROPERTIES OF THE ACTUAL TEST SPECIMENS, AND DOES NOT ADDRESS THE MANUFACTURING PROCESSES OR OTHER POSSIBLE REQUIREMENTS SPECIFIED IN THE ABOVE REFERENCED ACCEPTANCE CRITERION. OUL LETTERS AND REPORTS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. REPRODUCTION OF THE TEST REPORTS EXCEPT IN FULL, AND THE USE OF OUR NAME, MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. TEST SPECIMENS AND/OR UNUSED SAMPLE MATERIAL WILL BE RETAINED FOR 30 CALENDAR DAYS FROM DATE OF REPORT, EXCEPT BY PRIOR AGREEMENT. ilac-MR/

UCG/451007854

LABORATORY TEST NO .:

SP0413046

Elt.	Line	Intensity	Error	Conc,
		(C/S)	2-s1g	Wt %
Mg	Ka	5.08	0.336	3.980
A1	Ka	5.50	0.350	3.484
Si	Ka	24.23	0.734	12.974
S	Ka	9.02	0.448	4.081
C1	Ka	6.15	0.370	2.794
Κ	Ka	2.17	0.219	0.975
Ca	Ka	2.52	0.237	1.162
Ti	Ka	1.40	0.176	0.810
Mn	Ka	1.96	0.209	1.603
Fe	Ka	57.94	1.135	68.137
			Total	100.000

Elt.	Line	Intensity (c/s)	Error 2-sig	Conc, wt.%
Mg	Ka	7.65	0.412	1.925
Al	Ka	24.16	0.733	4.776
Si	Ka	71.09	1.257	12.032
S	Ka	15.28	0.583	2.144
C1	Ka	17.20	0.618	2.377
Κ	Ka	6.45	0.379	0.883
Ca	Ka	6.23	0.372	0.874
Ti	Ka	4.76	0.325	0.836
Mn	Ka	4.33	0.310	1.056
Fe	Ka	202.41	2.121	73.097
			Total	100.000

Elt.	Line	Intensity (c/s)	Error 2-sig	Conc, wt%
Mg	Ka	9.35	0.456	2.084
Al	Ka	17.90	0.631	3.118
Si	Ka	59.13	1.146	8.578
S	Ka	25.86	0.758	3.006
C1	Ka	16.11	0.598	1.864
Κ	Ka	6.10	0.368	0.698
Ca	Ka	10.23	0.477	1.198
Mn	Ka	7.75	0.415	1.541
Fe	Ka	256.66	2.388	77.912
			Total	100.000

Elt.	Line	Intensity (c/s)	Error 2-sig	Conc, wt.%
Mg	Ka	6.51	0.380	14.522
A1	Ka	2.48	0.235	6.942
Si	Ka	14.98	0.577	42.773
S	Ka	9.15	0.451	35.763
Ag	La	0.00	0.000	0.000
			Total	100.000

Elt.	Line	Intensity (c/s)	Error 2-sig	Conc, wt.%
Mg	Ka	1.61	0.189	0.417
Al	Ka	33.01	0.856	6.783
Si	Ka	178.83	1.993	33.882
S	Ka	1.97	0.209	0.391
Κ	Ka	9.34	0.456	1.679
Ti	Ka	4.09	0.301	0.949
Mn	Ka	0.91	0.142	0.306
Fe	Ka	120.34	1.635	55.594
			Total	100.000

Appendix I

Test Protocol, Rev. 4 CPF No. 4-2013-5006H Amended 4/18/13 Page 1 of 6

PEGASUS LINE - CONWAY TO CORSICANA M.P. 314.77

MECHANICAL AND METALLURGICAL TESTING AND FAILURE ANALYSIS PROTOCOL

I. Objective: Perform mechanical and metallurgical testing and failure analysis of the failed pipe from the Affected Pipeline in the area of Mayflower, Arkansas pursuant to this protocol.

II. Background Information/Additional Requirements:

A. Pipe manufactured by Youngstown Sheet and Tube and installed in 1947-1948.

B. Grade API 5LX-42 (42,000 psi SMYS) Low Frequency DC ERW, 20" x 0.312" wall.

C. Pipe joint has been coated and cathodically protected since original construction.

D. Crude oil service from 1947 to December 2002 when it was purged and idled with

nitrogen. The line was the re-hydrotested and put back in crude service in 2006 to

present.

E. The 2006 hydrostatic test pressure for the specimen was 1082 psig, and the

corresponding pressure at time of failure was estimated at 708 psig.

F. Upon excavation, the pipe specimen shall be delivered to Hurst Metallurgical Research Laboratory, Inc. (Hurst Lab) at:

2111 West Euless Blvd. Euless, TX 76040 Attn: Mahesh J. Madhani 817-283-4981

G. Prior to commencing the mechanical and metallurgical testing described herein, the Director of PHMSA Southwest Region shall be provided with the scheduled dates, times, and locations of the testing to allow a PHMSA representative to witness the testing.

H. All relevant pipe remnants (not consumed in process) will be preserved and stored in a secure location until returned to EMPCo. No material related to failed pipe will be disposed or scrapped by Hurst Lab.

I. All resulting reports in their entirety (including all media), whether draft or final, shall be distributed to EMPCo and the Director of PHMSA Southwest Region at the same time.

Test Protocol, Rev. 4 CPF No. 4-2013-5006H Amended 4/18/13 Page 2 of 6

J. Attached is the Metallurgical Laboratory Failure Examination Protocol (05/08/2007) provided by PHMSA. Attachment 1 to PHMSA's protocol provides guidelines for custody transfer and transportation of physical evidence. Attachment 2 to PHMSA's protocol provides a worksheet for documenting physical measurements. These data collection forms should be used, and if not, ensure that the applicable information contained in those examples is recorded during the testing of the failed pipe.

K. Specimen Identification

1. A 34' Long Section of a failed 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana segment of the Pegasus Crude Oil Pipeline after it failed in operation in Mayflower, Arkansas. Installed in 1947 to 1948

2. A 19'-10" Long Section of an intact 20" O.D. x 0.312" wall Pipe; Removed from Milepost 314.77 in the Conway to Corsicana segment of the Pegasus Crude Oil Pipeline . Installed in 1947 to 1948

III. Proposed Tests:

- A. Visual and Nondestructive Examination
 - Photographically document the pipe segments in the as-received condition. Provide photos of the failed specimens indicating 12:00 o'clock position at top of pipe, milepost, and north/south ends of pipe section as installed in the pipeline. Further, this documentation should include, but is not limited to, the following:
 - a) Fracture face and area adjacent to fracture
 - b) Coating condition
 - c) Manufacturing flaws
 - d) Pitting and/or any evidence of internal/external corrosion
 - e) Cracks
 - f) Seams
 - g) Girth welds

h) Determine and mark the location of the electric resistance weld seam at end of each sample and determine if the failure falls within the electric resistance weld zone.

i) Record any markings detected on the inside and outside surfaces of the pipe.

2. Perform visual inspection on "as-received" condition and document any anomalies, including but not limited to the following:

- a) Cracks and crevices
- b) Condition of the ERW seam and girth weld
- c) Dents, bends, and buckles
- d) Gouges
- e) Manufacturing defects

Test Protocol, Rev. 4 CPF No. 4-2013-5006H Amended 4/18/13 Page 3 of 6

f) Coating condition, and any damages such as wrinkles or tents, or disbonding

g) Pitting and/or any evidence of internal/external corrosion

h) Evidence of arc burns and excessive grinding

i) Presence of corrosion deposits

j) Describe coating, and coating damage (disbonding) if any, in the vicinity of the fracture origin and at other locations in the failed pipe sample

3. Collect solid and liquid samples, if present, from the pipe surface and conduct chemical analysis and microbial tests on these samples as appropriate. Examples of these samples that may be collected are, but are not limited to, the following:

a) Liquid accumulated underneath the coating

b) Corrosion products from the interior/exterior surfaces of the pipe

c) Soil adhering to the pipe not contaminated by the crude release

4. The coating on the surfaces of the pipes will be removed by a third party, contracted directly by EMPCo. The coating shall be removed in such a manner that it will not be injurious to the pipe. Photographically document and visually inspect the pipe again following coating removal, as necessary, (see 1. and 2. above for guidance). Note any disbondment or possible adhesion problems with coating.

Attachment 2 to PHMSA's protocol provides a worksheet for documenting physical measurements.

EMPCo's proposed coating removal procedure/JSA document is provided as a supplement to this protocol. This document was previously provided to PHMSA to address coating removal; for the pipe extraction work. Extreme care will be taken to prevent any permanent mechanical damage to the pipe section. The use of a resin hammer will be initially used on a non-fractured intact pipe to remove the coating. If removal of the coating is not possible by the use of a resin hammer, a steel hammer may be used. The removal of the coating will be observed by Hurst Lab personnel. In addition, a meeting will be held with the coating removal team prior to the removal of the coating to instruct the personnel that the integrity of the pipe is maintained. A representative of Hurst Lab will be present to monitor coating removal in its entirety.

B. Physical Measurements

1. Verify roundness and geometry of pipe at the extremities and closer to the failed surface.

2. Perform a "map" of ultrasonic thickness measurements within 12 inches upstream and downstream of each end of the rupture if possible, and along the entire length of the rupture. Measurements will be taken around the entire circumference along the length of the pipe as specified. At each 2" interval, measurements will be taken at 30 locations evenly spaced around the circumference of the pipe. The ultrasonic tests shall be conducted at this Hurst Lab by Bonded Inspections, Inc.

Test Protocol, Rev. 4 CPF No. 4-2013-5006H Amended 4/18/13 Page 4 of 6

3. Various dimensions of the fractured and intact pipes will be measured using micrometers or other suitable measuring devices. Measurements will include but are not limited to such as:

a) Diameter and wall thickness at areas adjacent to the failure, as well as visually intact areas of the pipe

b) The length of any cracks or ruptures

c) Axial distance from crack origins and/or tips to the nearest girth weld

C. Chemical Analysis

1. Chemical analysis of the pipe shall be performed using the Optical Emission Spectroscopic (OES) test method in accordance with ASTM E415-08, to determine the weight percent (wt%) of carbon, manganese, phosphorus, sulfur, silicon, chromium, nickel, molybdenum, copper, and aluminum, as well as any other elements common to API 5L line pipe steels.

Note: Both the latest edition of API 5L and the edition in effect at the time of manufacture shall be referenced as the standard for comparison.

D. Mechanical Properties

1. Mechanical testing involving yield strength, ultimate tensile strength, and elongation should be performed on pipe material that has not been plastically deformed during service. These tests will be performed in accordance with ASTM A370-12a for the pipe base metal and weld seams.

2. The transverse tensile test specimen blanks will be flattened prior to machining and testing, as allowed in API 5L. All tensile test specimens will be 1-

1/2" wide over the 2" long gauge area, and the yield stress will be calculated at a 0.5% offset. The minimum specimens that shall be prepared and tested are as follows:

a) 1 transverse test specimen, removed through the ERW

seam b) 1 transverse test specimen, removed 90o from the

ERW seam correct

c) 1 transverse test specimen, removed 180° from the ERW seam

d) 1 longitudinal test specimen, removed 90° from the ERW seam Note: Both the latest edition of API 5L and the edition in effect at the time of manufacture shall be referenced as the standard for comparison.

3. Impact Tests

For Charpy V-notch (CVN) impact testing, testing should be performed in accordance with ASTM A370-12a to determine the toughness characteristics of the ERW seam and the base metal of the pipe. Multiple sets of 3 transverse 10 mm x 6.67 mm (2/3 size) or 10 mm x 5 mm (1/2 size) CVN impact test specimens will be prepared and tested at various temperatures to establish the

Test Protocol, Rev. 4 CPF No. 4-2013-5006H Amended 4/18/13 Page 5 of 6

upper-shelf energy (in ft-lbf), the lower-shelf energy (in ft-lbf), and the ductile- tobrittle transition temperature for the base metal and, if possible, the ERW seam. The lateral expansion (in mils) and the percent shear will also be reported. CVN impact values used to develop the S-curve will be provided down to a minimum temperature of 32°F. Minimum operating temperature of the pipeline during winter months could be 45 degrees F in extreme cases. Therefore, it is preferable to have the CVN values (S-curve) down to 32°F provided. Longitudinal CVN values are not needed unless specifically asked for.

It should be noted that representative CVN impact values for the ERW seam may be difficult to obtain, and that the values can vary considerably throughout the welded joint and along the pipe.

Note: Both the latest edition of API 5L and the edition in effect at the time of manufacture shall be referenced as the standard for comparison.

- E. Metallographic Examinations
 - 1. Perform metallographic examination and take photomicrographs of areas such as the following:
 - a) At or near the fracture origin
 - b) Fracture surface
 - c) Weld seams

d) Areas identified as defects or cracks during visual and/or nondestructive examination

e) Areas away from the fracture surface showing typical microstructures of the base metal, weld metal, and heat-affected zone

2. Metallographic samples should be examined to validate any issues specific to the failure such as the following: pipe grade, weld seam in area of fracture, weld seam in unaffected area, corrosion, and indication of outside mechanical damage.

F. Microhardness Surveys

1. Perform Knoop microhardness profiles at areas at or near the fracture origin and the weld seam (converted to Brinell hardness values). Microhardness surveys shall be conducted on metallographically prepared cross-sections in accordance with ASTM E384-11, to determine the hardness at appropriate locations such as the base metal, heat affected zone, and fusion line of the ERW seam at the fracture origin and away from the fracture.

G. Fractographic Examination

1. Visually examine the fracture surface in detail to identify the characteristics of the fracture, the nature of the original defect, and the failure initiation point(s).

Test Protocol, Rev. 4 CPF No. 4-2013-5006H Amended 4/18/13 Page 6 of 6

2. Sections of the fracture surfaces will be removed as necessary to allow for detailed low magnification visual examination and photographic documentation of the fracture morphology. If possible, the fracture will be determined to be the result of brittle or ductile overload, fatigue propagated cracking, or the result of combined effects of stress and environment.

3. If necessary, small sections of the fracture surface at pertinent areas will be examined and photographed at high magnification using a Scanning Electron Microscope (SEM) by Anastas Technical Services in Houston, TX.

H. Corrosion Examination

1. Surface deposits and residues associated with the fracture area and adjacent areas should be collected and analyzed, if possible, to characterize and determine the origin of the deposits. Attachment 2 to PHMSA's protocol provides a worksheet for documenting chemical analysis results of corrosion products.

2. Based on the results of the visual, non-destructive, and metallographic examinations, the presence of corrosion should be documented, and the type and characteristics of any corrosion present should be evaluated. Remaining strength calculations (RSTRENG/ASME B31G) may be performed on corroded areas to support the failure investigation.

3. If an in-line inspection (ILI) tool has inspected the failure site in the past, investigation of the ILI log and report can provide information relevant to corrosion growth rate. The operator may not have this information immediately available, but it may be desirable to do this research. In the case of finding the anomaly present in the past ILI report, it is important to understand the operator's excavation criteria in effect at the time of the ILI and the application of RSTRENG calculations and anomaly interaction criteria.

I. Data Analysis and Report Publication

1. Data analysis will include a review of the provided background and service history, if available, analysis of the test data generated through the aforementioned tests and evaluations, the review of the available standards and specifications applicable to the pipe, and metallurgical research.

2. Both the latest edition of API 5L (45th Edition) and the edition in effect at the time the pipe was manufactured (10th Edition) will be referenced as standards for comparison. For the purposes of identifying test specimens, the longitudinal direction will be considered to be along the axis of the pipe.

3. The final report containing our findings will then be published to the agreedupon parties.

Appendix II

The photograph displays the pipe sections in the as-received condition with the protective wrapping on the outside surface of the pipe sections that was applied to prevent any damage during transportation.

The photographs display two (2) perspective views of the pipe section in the as-received condition.

The photograph displays the pipe section, a drum containing the coating material that was removed in the field prior to sectioning of the cracked pipe and a bag containing possible calcareous deposit.

The photographs display two (2) pipe sections during the unloading process. There was no evidence of any transportation related damage to the pipe sections.

THIS MEMORANDUM is an acknowledgment that a Bill of Lading has been is copy or duplicate, covaring the property named herein	sued and is not , and is intended	the Original Bill I solely for filing	of Lading, nor a or record	Ship	per's N	0		
(Carrier)	SCAC.			Carr	Carrier's No.			
Received, subject to the classifications and tariffs in effect on the date of the bill of Lading:	, dat	e		from	-			
he property described online, in appearing good order, except as noted (contents and condition of contents of package to contents as meaning any praction or corporation to possession of the property under the contract, agrees to can't be and deplination. It is instantially agreeft, as its relation can of all or any pointion of said deplination, and as to early purity	s unknown), marke z its usual place of r at the time interes	ed, consigned, and getwery at aaid de ned in my (n as of	destined an indice entrustion, if on its unit property, itse	ted below, which own road or its ow revery second to t	and nompany (the m water line, other re performed here	e word company being under a rwise to doliver to another card under shall be subject to all the	ood throughou ler on the rout conditions so	
reductive by taw, whether puriod or written, haven contained its specified in Appendix to Pari 1025 which the here TO: (Mail or street address of consignee for purposes of notification only) Consignee H usst M et all us gical Street A M E E M et all us gical Street A M E E M et all M G E M Destination H M S T T Z D Route:	FRI Ship Stre Orig	OM: M oper tet Mc jin Con	layfl b + { nwcy	owe Cipo Art	r +l ain	onway ti	u Hp	
Delivering Carrier:	Trailer Initial/ Number:			U.S. DOT Ha	rmat		_	
No. of Packages HM Description of articles, special marks, and exceptions	Hazard Class	I.D. Number	Packing Group	*Weight (subject to correction)	Class or Rate	Labels Required (or exemption)	Check Column	
1 55 gallon drain 1 Bog Dirt								
Remit C.O.D. to: Address: City: State: Zip:	Subject to shipment is to recourse on the the following students the carrier shipment without	1 Section 7 of co be derivered to b consignor, the co atement shall not mere ut payment of free	nditions, if this unsignee without neigner shall sign delivery of this ont and all officer	C.O.D. \$	Amount:	C.O.D. Fee Prepaid		
If the intervent movies between two points by a content by water, the law requires that the bit of looking shall shale whether it is "cannot" or shippon's weight". How we have the case is dependent on value, physicism are required to shale specifically is writing the agreed or declamic value of the property. The agreed we addented value of the stocehy is hornby positive addented water of the stocehy is hornby positive addented water of the stocehy is non-by positive addented water of th	- Hawful chargos.	Signature of Consign	nor)	Charges / \$	Advanced	Freight Charges	collect []	
The is to useful the states benefit musical on property distance discreted produced and a base of experimentation for baricontains an ordering to the spontation regulations of the Department of Transportation, PLACARDS REQUIRED	>	0	Se Par	PLACARI		YES NO-FURNISHED	BY CARRIER	
SHIPPER: PER: Recid DATE:	CAR		bem	vons	ΓC	DATE: 4-16-1	13	
MOMARAM 416/2013	TELE	EPHONE N	UMBER:	()		Mars .		
RPBOL-25 (rev. 900211)	Monton	ed at all times this t	Hazandoue Mainra	l 26 im trätugsortatio	n induding storing	e readorital in travapoitation (172.604)	

Attachment C

Evid	ence Control Log			ExxonMobil Pipeline Company Pegasus Pipeline, Mayflower, AR
Tag #	Date Recovered		Description	Photo #
2	4/15/2013	South of De	maged section Pipe	100-0320 Z78
Date	Action (eg. Shipped, returned, testing, etc.)	Destination	Person/Organization	Signatures
4/15	x-for	Conway Station	T. Armstrong Trucking	Released: KDM off
			<u> </u>	Accepted: Millon
				Released MITCH WILSON
				Accepted:
4/15	X-fer	Conway Station	Ep Fletcher	Released: mall
			Security	Accepted:
4/16	X-fer	Convey Statim	Frankie Tucker .	Released:
			Security	Accepted: J. Juch
4/16	X-fer	ConwyState	J. Armstriens Truck.	BReleased: A.T. Ju
		/		Accepted: C. younc
		114	1201>	Released:
		K	MADHANI, MADHANI	Accepted: MMade,
		500		Released:
				Accepted:
				Released:
				Accepted:

C:\Users\KMSHEPH\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\EU162BC2\Mayflower Incident Repair Procedures - DRAFT 4-7-13 (removed PHMSA already approved tasks).doc Page 20 of 32

.

A	tta	ch	m	er	It	C
	LLLL	U 11		C 1		-

Evid	ence Control Log			ExxonMobil Pipeline Company Pegasus Pipeline, Mayflower, AR
Tag #	Date Recovered		Description	Photo #
4	4/14/2013	Pipe Coetin	9 in Black, Barred	
Date	Action (eg. Shipped, returned, testing, etc.)	Destination	Person/Organization	Signatures
4/16	Shipped	Hurst Lab	T. Armstrong Trucking	Released: No my KDM
	1,		Cyoung	Accepted: C. YOUMC
				Released:
			F	Accepted:
4/16	Received	HurstLab	Х	Released:
1		16/2012	M, J, MADHAAN	Accepted: X MgMadhan
		3:300	x	Released:
				Accepted:
				Released:
				Accepted:
				Released:
				Accepted:
-				Released:
				Accepted:
				Released:
				Accepted:

Attachment C

Evide	ence Control Log			ExxonMobil Pipeline Company Pegasus Pipeline, Mayflower, AR
⊺ag #	Date Recovered		Description	Photo #
3	4/15/2013	Surface	Deposit	100-0315 273
Date	Action (eg. Shipped, returned, testing, etc.)	Destination	Person/Organization	Signatures
4/15	X-fer	Concury Statim	T.Armstrong Trucking	Released: KDM K
				Accepted: Mules
				Released MITCH WKST
				Accepted:
4/15	X-fer	Conway Statish	Ep Fletcher	Released: malla
			Security	Accepted:
4/16	X-fer	ConneyStatim	Frankie Tucker .	Released: MAT
			Security	Accepted:
4/16	X-fe	Cerwin Stath	TArmstrung Trucker	Released: 127. Jun
			2	Accepted: C. Your
			12017	Released:
		4	MAS Madhani'	Accepted: Manager
		33		Released:
				Accepted:
				Released:
				Accepted:

Attachment C

Evide	ence Control Log			ExxonMobil Pipeline Company Pegasus Pipeline, Mayflower, AR
⊺ag #	Date Recovered		Description	Photo #
	4/15/2013	Rep Va	maged Joint,	120-0319 277
Date	Action (eg. Shipped, returned, testing, etc.)	Destination	Person/Organization	Signatures
4/15	X-fer	Conway Station	T. Armstrong Trucking	Released: KDM
			,	Accepted
				Released MITCH WILSON
				Accepted:
4/15	X-fer	Conway Station	Ep Fletcher	Released: Mhula
			Security	Accepted:
4/16	X-fer	Convey Station	Frankie Tucker .	Released: WP ff
			Security	Accepted: J.J. Juch
4-16	X-fes	Conver State	T. Armstrong Truck	HReleased: A.J. Juce
			2 and	Accepted: C: Maune
		Vin	120 200	Released:
		1	MJMADHANI	Accepted: NAMadhany
				Released:
				Accepted:
				Released:
				Accepted:

C:\Users\KMSHEPH\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\EU162BC2\Mayflower Incident Repair Procedures - DRAFT 4-7-13 (removed PHMSA already approved tasks).doc Page 20 of 32

Appendix III

COATING REMOVAL TASK

Extreme care will be taken to prevent any permanent mechanical damage to the pipe section. The use of a resin hammer will be initially used on a non-fractured intact pipe to remove the coating. If removal of the coating is not possible by the use of a resin hammer, a steel hammer may be used. The removal of the coating will be observed by HurstLab personnel. In addition, a meeting will be held with the coating removal team prior to the removal of the coating to instruct the personnel.

The undersigned understands the importance of using extreme care in removing the pipe coating.

Print Name Signature Date -sico 3 pen

The photographs display the coating removal that was carried by impacting with steel or composite hammers.

The photographs display the hand removal process of the coating which remained on the pipe after initial removal with hammer.

The photograph displays the initial coating removal process.

The photograph displays the careful hand removal process of the coating adjacent to the crack.

Appendix IV

ODO to U/S	GW: 81602.14	Upstream Girth Weld #: 17290	Segment: Conway to Corsica	Seam Tune	SAW FW ERW X	DSAW SMLS Lap	Tape Tape: Coal Tar X	T1 316 Actual Profile Data:	T2 312 TW 383 WH 0	NDE Comments or Remarks	See Remarks Below				Thickness Profile of Long Seam					
5.62	60	# ~		i i	é – 1	tel tel	tivity	anven a		Wethod NDE	UT					360 Tere			r required	
310+2	4501.0	Dig 12	-	Condition	Soil pH NA	Top of Di	Soll Resist	III OI	м П	Grind Grind Length (in)	AN					of pipe wh		Also denot	Inder on repair	
Ó,		aly	×42			à	ď,		ased Arra	Flaw Type	Incl					of the rup s length o	End	End:	s) (s	
Suce:	o US ce:	y Anom .98	. 0.312			11	11.		UT-Ph	Mid ID' OD or	MID					along the		China the	= LIOCKSP ification()	-VIII
Kerere	ance to	o Primar 81627	20.000	sions	24.67	23.67	°U26	000	Q	Pipe or Pipe or	Pipe					ches dow nference	Start	Start	Cert	7
S	Dist	obot	ials: (an Dimer		End:	1	200	UT-Shea	xsM, Max %	48.9%					om 12 inc dre circur	-	12	/be p ol	
-			/ Nomir	action Ar	kamined:	,00				hk Max Ind Depth (mils)	153			1	marks	id and fr d the ent	Numbe	Numbe	- B	
	anort	-	scription	lan	of Pipe E	7			gree X	Pipe Ti at Inc	313	-			DE Re	e girth we en aroun	Sleeve	Sleeve	A sidev	
	NDF R	2012	Pipe De		Length	Axial Star	10.10	hods	UT-0 De	Circ exter (°) (in)	0.3				or NI	am of the also tak			A = 1ype	
	peline	e: July		Г		1	1	DE Met	naly Info	t Circ	197			_	Inspect	es upstre ents were t.	pair Typ	pair Typ		
	obil Pi	un Dat		IS Joint	NA	0°		Z	Anor	d Circ d star (°)	19(ied by Di	n 12 inch easurem d. aminatior	Re	Re	nician	Hecht
	Muoxy	FI)/R							FAST	Axia Leng of In (in)	2.7 2				VI= Verifi	aken fron Kness m recorder sonic exa sonic exall.			Tech	Jeff
	E) Enertic	E (PII/	z	cint .					UT-	n Ene ind (ft)	2 4.7				cable	s were Is vPPs thic nts to be the ultra n the pip				
	ine In	9	LUATIO	Memon	NA	360°				Sta Sta (f) Ind (f)	4.1				Not Appl	suremen tion, CMM asureme ed during				
	2		AB EVA							nt Dep		-	-	-	=NA=	ess mea In addit ingful me indentifie ar-type in				
	I		JRST LJ	loint	AA	٥°			WCAMT	irc exte (°) (in)					ot Varifie	nic thickn s surface ed mean sas were s a lamin			F	
ç	2		H	5/11	i i	iu.				h Log c					N=N) ultrasor If the pipe ons allow osion are sars to be			e of Exar	5/1/13
è	2		oject:		int Lengt	rc Positio			×	Log lengtr (in)					1 Given	Ps (AUT s around s conditio rnal corn			Date	40
ſ		1	Pad		of	LS Cir			Visua	Log Start (ft)					dG=No	CMAPF degrees surface to inte				

Page 1 of 1

202	ExxonMobil Pipeline	US Reference: 16 Distance to US	4501.00	ODO to	81602.14											
	Inline Inspection Tool Correlation NDE Report	Reference: ODO to Primary Anomaly	Dia #	Unstream	Girth Weld											
	GE (PII/TFI) / Run Date: July 2012	81627.98	12	1	7290											
I		05/01/2013		Description of Scan Area for Gr upstream	photograph id 1 Area (12" of GW)											
				Description of nomaly 1 Area Ma Sectior	photograph arked on Pipe for ning											
0DO to	U/S GW: 81602.14	# Upstream Girth Weld #	17290	×	Help	1	Depth(in)	50 -X-axis		10.0	38.2 S.8		1.7 <- Depth	ea Scan		
------------------	------------------------------	-------------------------	--------------------	---------------------------	---------------------------------	--	--	------------	---	---------------------	----------	------------------	----------------------------------	-----------	------------------	--
310+25.0	4501.09	Dig #	12						.00	9,0				Grid 1 Ar		
US Reference: 16	Distance to US Reference:	ODO to Primary Anomaly	81627.98		ay <u>S</u> ettings	13:05 HP: N/A	•	- 64	cknss: 30.10%01/2 V Angle: 0	2,0 8,0					Certification(s)	
		ПСЕ Кероп	2012	<	<u>[</u> ools Disp]	Time: 12:54 - ter: 2		30-	Bpth: 0.301 Th	5,0 6,0						
il Pipeline			n Date: July 3	4	n <u>A</u> -Scan	e: 05/01/2013 ull Video Fil tage: 400 .301 in			TOF: 2.160 us oft Gain: 0.0 us MP: 0.301 in	4,0						
ExxonMot	-	le inspection 1 001	GE (PII/TFI) / Rui	tart. Grid 001 - Unlocked	te <u>C</u> -Scan <u>B</u> -Sca	rt_Grid_001 Exam Dat Thresh Video Mode: F t: 0.0 db Pulser Vol 2.000 Depth: (-20	00 N-axis: 2.000 D 00 SY-axis: 2.000 S 9.440 us TOF2: 7.280	2,0 3,0			1.0 it.0 iternational, LLC		Technician	
				gasus Dig 12 St	nannel <u>G</u> a	s_Dig_12_Sta SH 1 Mode: :: OFF Offse 3,000, X-axis:		10	Y-axis: 3.00 Y-axis: 3.00 MP: 49% TOF:	1,0		And he	0.6 0.8 1			
000	いいろ	PFINDE		Analysis - EMPCO Pe	File Mode Ch	File: EMPCO_Pegasu Channel: 1 Gate: Gain: 50.0 dB Dac Y-axis:	10.0 10.0	4	Zoom 5 20:1 8	0.0 0.0 <u>0</u>	h 0.6-	110 60 100	Zoom 1		ate of Exam	

Appendix IV - Page 5 of 26 Report No. 64961, Rev. 1

Lage Lor L

Appendix IV - Page 8 of 26 Report No. 64961, Rev. 1

3	ExxonMobil Pipeline	US Reference:	16310+25.62	ODO to	
2		Distance to US Reference:	4501.09	U/S GW:	81602.14
JE -	Inline Inspection 1 ool Correlation NDE Keport	ODO to Primary Anome	aly Dig #	Upstream G	irth Weld #
DECIMITERS	GE (PII/TFI) / Run Date: July 2012	81627.98	12	172	06
D_Pegasus_Dig	.12.Start.8ft.to.10ft - Unlocked		and a		*
Channel	Gate C-Scan B-Scan A-Scan Iools Disp	lay <u>S</u> ettings			Help
pasus_Dig_1 es SH 1 H Dac: OFF 1 106.250, X	2.Start_Bft_to_10ft Exam Date: 05/01/2013 Time: 14:5 ode: Thresh Video Mode: Full Video Filter: 2 Dffset: 0.0 db Pulser Voltage: 400 .axis: 37.750 Depth: 0.325 in	5 - 15:14 HP: N/A			1
	のの語言を				Depth(in) 0.05 0.15 0.25 0.35
10	-8	40-	- 6	T	0.45
Y-axis: SY-axis: AMP: 95%	106.250 X-axis: 37.750 DTDF: 2.240 us 106.250 SX-axis: 37.750 Soft Gain: 0.0 106: 9.520 us TDF2: 7.280 us MP: 0.325 in Dpth: 0.325 Ti	icknss: 32,50%81/2 V Angle	e: 0.00		
38,0	100.0 102.0 104.0 106.0 108.0	110.0 112	.0 114.0	116.0 118.0	Peak (%)
					8 8 8
W. Ner	A.				
0.5 0.7	. 1				<- Bepth
			Scan from 8ft to 1	Oft	
E	Technician	Certification(s)			
	Jeff Hecht	Lvi III			

	81602.14	Girth Weld #	7290		Help		ĥ	Depth(in)	0.15-	0.25-	45- 45- 4- X-axis		Feak (2)	28.8		C- Depth		
ODO to	U/S GW:	Upstream	-								55,0		.0 157.0				4ft	
310+25.62	4501.09	Dig #	12								50.0	0.00	165.0 166				can from 12ft to 1	
US Reference: 16:	Distance to US Reference:	DDO to Primary Anomaly	81627.98		lay <u>S</u> ettings	46 - 16;00 HP; N/A					45.0	oknss: 32,50%@1/2 V Angle:	183.0 164.0				S.	
line			July 2012		can <u>T</u> ools Disp	5/01/2013 Time: 15: 60 Filter: 2 0					40.0	40 us 0.0 .325 in Dpth: 0.325 T	152.0					
ExxonMobil Pipe		ection 1001 Correla	PII/TFI) / Run Date:	14ft - Unlocked	can <u>B</u> -Scan <u>A</u> -S	o_14ft Exam Date: 0 ideo Mode: Full Vid Pulser Voltage: 40) Depth: 0.325 in	1.1.1			0 35,0	: 41.250 DT0F: 2.2 : 41.250 Soft Gain: T0F2: 7.280 us MP: 0	180,0 151,0				chnician	ff Hecht
		Inine Inspe	GE (I	Dig 12 Start 12ft to	el Gate C-Sc	_12_Start_12ft_t Mode: Thresh V) Offset: 0.0 db	X-axis: 41.250	× 13	-	110	30.	: 165.250 X-axis : 165.250 SX-axis LX T0F: 9.520 us	159,0		Z	6.0 7	To	Jet
000	252	PFINDE	PPELAKE INTEGER	nalysis - EMPCO_Pegasus_L	ile Mode Channe	e: EMPCO_Pegasus_Dig. nnel: 1 Gate: SH 1 n: 50.0 dB Dac: OFF	Y-axis: 165.250,	-0.72	96.0 -	5.0- 4.0-	5 14 25.0	1:1 SY-axis: BPP: 61	157.0 158.0 0.1	0.5		0.1 0.3 0.5 0.	ata of Evam	5/1/2013

	31602.14	th Weld #:	0	×	Help		1	0.05 Peth(in) 0.15 0.15	0.45 - X-axis		Peak (X)	200		<- Depth		
ODO to	U/S GW:	Upstream Girt	1729						55.0		5.0 157.0				4ft	
310+25.62	1501.09	Dig #	12						50,0	0.00	165.0 16				an from 12ft to 1	
US Reference: 163	Distance to US A	ODO to Primary Anomaly	81627.98		lay <u>S</u> ettings	46 - 16:00 HP: N/R			45,0	ncknss: 32,50%01/2 V Angle:	153.0 154.0				Schiff antipariation Sc	
peline			te: July 2012	1	-Scan <u>I</u> cols Disp	: 05/01/2013 Time: 15: /ideo Filter: 2 400	c		0,04	2.240 us in: 0.0 : 0.325 in Dpth: 0.325 TI	1.0 182.0				_	
ExxonMobil Pi	0	spection 1001 Corr	E (PII/TFI) / Run Da	to 14ft - Unlocked	-Scan <u>B</u> -Scan <u>A</u>	t_to_14ft Exam Date Video Mode: Full 1 db Pulser Voltage:	.250 Depth: 0.325 1		30,0	xis: 41.250 DT0F: xis: 41.250 Soft Ga us T0F2: 7.280 us MP	160,0 15				Tashaialan	Jeff Hecht
			19	s Dig 12 Start 12ft	nel <u>G</u> ate <u>C</u> -	ig_12_Start_12ft 1 Mode: Thresh FF Offset: 0.0	50, X-axis: 41.		10	is: 165.250 X-a is: 165.250 SX-a 61% TOF: 9.520	1.0 159,0		she a	. 6°0 , 2°0		7
000	ろらろ	PEINDE	SHEEME INTEGRATE SPECIALISTS	nalysis - EMPCO_Pegasu	ile Mode Chani	e: EMPCO_Pegasus_D: nnel: 1 Gate: SH 3 n: 50.0 dB Dac: 0F	Y-axis: 165.25	7.0- 8.0- 8.0-	4.0-	Dm Y-axt	157.0 158 0.1	0.5-000		0.1 0.3 0.5	ato of Eurom	5/1/2013

	/: 81602.14	am Girth Weld #:	17290	×	igs <u>H</u> elp	P: N/A		Depth(in) 0.105-0.15-0.15-0.15-0.15-0.15-0.15-0.15	<- Х-аніз	L/2 V Angle: 0.	Peak (2) 110 50 50 20				
ODO to	U/S GM	Upstrea			Settir	- 16:24 H		<u>12</u>	50.0	ss: 32,502@			6ft		
20.02+010	4501.09	Dig #	12	1	Display	ine: 16:08			45.0	0,325 Thekn			can from 14ft to 1		
US Kelerence. 10.	Distance to US Reference:	ODO to Primary Anomaly	81627.98		A-Scan Iools	te: 05/01/2013 TJ Video Filter: 2 5: 400	5 in		35.0 40.0	2.240 us Gain: 0.0 MP: 0.325 in Dpth: 0 188 0			ŏ	Certification(s)	Lvill
eline		ation NUE Keport	: July 2012	6ft - Unlocked	an <u>B</u> -Scan	16ft Exam Da ideo Mode: Full Pulser Voltag	Depth: 0.32		25.0 30.0	29.750 DIUC 29.750 Soft TOF2: 7.280 us					
ExxonMobil Pipe		Inline Inspection 1001 Correls	GE (PII/TFI) / Run Date	Pegasus Dig_12_Start_14ft_to_1	Channel Gate C-Sc	asus_Dig_12_Start_14ft_to e: SM 1 Mode: Thresh Vi Dac: DFF Offset: 0.0 db	180.250, X-axis: 29.750		10.0 15.0 20.0	Y-axis: 180.250 X-axis: SY-axis: 180.250 SX-axis: AMP: 88% T0F: 9.520 us 172 0 175 0		when		Technician	Jeff Hecht
	のらの	PFINDE	PPELME INTELEMENTS	X Analysis - EMPCO	File Mode	File: EMPCO_Pega Channel: 1 Gate Gain: 50.0 dB D	Y-axis:	Y 2 188.0 1 184.0 1 176.0 176.0 168.0 168.0	3 2.0	5:0.50	0.1 0.4 1.6 1.6	110 ±	TH BCC	Date of Exam	5/1/2013

Appendix IV - Page 12 of 26 Report No. 64961, Rev. 1

	81602.14	n Girth Weld #: 17290	ay to Corsicana	am Type:		Lap coal Tar X	Profile Data:	383 WW 520	Comments or Remarks	Remarks Below					rofile of Long Seam	TW TW TZ			
ODO to 11/S	GW:	Upstream	Segment: Conw	SAW FW		DSAW SMLS Coa	Actual	T2 312 TW	NDE	See					Thickness P	FE C		_	
5.62ft	6	#		12		ch ch	n/cm	1	Wetpoq NDE							or 360 the		required	
0 + 25	501.0	Dig 12	_	Soil pH	AN	op of Ditt NA Itm of Ditt NA NA	A ohr	×	Grind Grind							pture fo 3" along		Vo repair	
1631	4	x	X42	<u> </u>		L N H N N	-	sed Array	Flaw Type							of the ru to 0.316 Column	End	I I I	
:eo	SN ::	Anomal 38	0.312"					UT- Pha	ID' OD or	J						stream c s. 0.288" e face.		Clockspri	vel III
eferen	nce to erence	Primary 1627.9	20.000"	suo	4.67	23.67	360°	×	Pipe or Pipe or							es down I interval ied from e ruptur	Start	NB: C =	Lerun
US R	Distar Ref	obo to 8) :s	Dimens	2	Đ.	:p	T-Shear	xsM ,rhiqeD %							12 inche inch grid ings var ent to th		e "B" Slee	
-		12	Nomina	tion Area	nined:	۵ ۲	μ	ò	Max Ind Depth (mils)						arks:	weld to pe at 2 i ess read	area	B = Typ	
	ţ		iption / I	Inspec	Pipe Exar	0.1-	0	×	Pipe Thk at Ind (mils)					•	Rem	ne girth gth of pi i thickne mediate	Sleeve	* sleeve;	
	DE Der	012	e Descr		ength of	al Start.	rc Start:	I-0 Degre ation	Circ extent (in)						NDE	sam of tl the lenç The pipe		Type "A	
	line Ni	July 2	Pip			¥X.		Metho U V Inform	Circ end (cik)						spector	is upstre	air type	A	
	il Pipe	Date:		oint	1			Anomal	Circ start (clk)				A		ul Bid ka	12 inche mferenc examin present	Repé		cht
	doMn	/ Run		r sia	N	ź		×	Axial Length of Ind (in)						Verified	n from ' re circu trasonic map re			off He
	Exxo	PINTFI		2	Î	÷ŕ.		UT-FAS	End of (ft)			z			te Vt=	ere take the enti ig the ul ickness			
	Inene	GE (I	VUIN	taly Joint	NN	2:00			Start of (ft)				1	T	Applicab	nents w around ed durir in the th			
	Inline		EVALUA	Anon		Ť			Log Depth (%)				1		NA= Not	easurer re taken indentifi a "AE" o d cap. (/			
			T LAB	1	Ì	Si la		X TMF	Log circ extent (in)						infied	cness m surface. ents wer is were is "A" anu jirth wel			113
C	n	STRING	HURS	U/S Joir	N	N		WC	og circ start (cik)					1	V= Not Ve	nic thick he pipe : asureme ion area ntified as stream g			51112
Ç	5		#		ength:	osition:		100	Log L sngth (in)					1	ven NI	of ultrasc around th tess me al corros al corros the up:			2013 to
ç	n	and the second s	Projec		Joint L	S Olre Pr		/isual X	Log tart le		-	-		+	=Not Giv	"map" o grees a le thickr le thickr interné be. de grid ru presents			4/28/

Notice Inspection Tool Correlation NDE Report DOID Premery Journal Dig # 12 Upstream Girth Weld # 17290 Image: Inspection of protograph Image: I	SGS	ExxonMobil Pipelin	e US Reference: 1 Distance to US	6310 + 25.62ft 4501.09	ODO to U/S GW:	81602.14
	PfiNDE	Inline Inspection Tool Correlation	ODO to Primary Anon	aly Dig #	Upstream	Girth Weld #:
<image/>		GE (PII/TFI) / Run Date: Ju	uly 2012 81627.98	12	1	7290
Date of Exam lechnician Certification(s)					Description of Grided Pipe look (pipe gridded 12" ruptur Description of townstream Girthy e gridded 12" ups	photograph ing upstream downstream of e).
	Date of Exam	Technician	Certification(s)	01-		

				Conwa	y to Cors IRST LAE	icana 3					
۲	7	e	4	2	9	7	œ	6	10	ŧ	12
302	299	301	313	312	310		314	315	312	313	313
313	301	300	310	309	313		303	310	313	310	301
312	311	310	311	316	320		313	313	313	313	316
301	310	310	309	308	303		309	311	300	303	311
310	311	311	308	310	310		310	308	309	310	310
314	314	314	315	310	310		311	309	311	310	311
307	306	305	305	308	308		308	308	312	309	310
312	314	308	307	306	310		308	312	311	310	312
318	312	312	313	313	313		316	316	313	316	304
303	311	308	310	311	312	a	314	312	312	313	314
310	305	305	306	305	308	П	312	313	310	309	309
305	310	308	310	310	307	Ξ	312	311	312	311	312
310	306	307	310	309	308	1/1	312	310	312	311	310
310	310	306	305	310	308	N	310	311	313	311	311
306	310	308	308	309	309	ł	310	311	312	312	312
308	307	309	307	309	310	4	310	311	312	311	311
306	309	310	308	310	309	L	310	311	312	311	310
308	307	309	308	310	310	Ы	311	310	312	312	310
306	309	308	308	310	311		310	310	310	310	312
302	309	308	310	310	310	อ	310	310	312	309	309
310	308	309	310	310	312		310	310	312	310	310
312	310	310	308	308	311	S	308	308	308	309	310
308	310	310	309	310	309	n	310	310	309	311	309
310	309	309	309	310	312		310	312	311	310	310
310	309	309	309	309	309		310	307	307	309	309
308	303	306	306	306	309		310	306	307	302	308
308	307	306	306	306	306		309	310	307	307	308
304	304	304	312	303	311		310	310	303	302	312
305	307	307	303	303	307		310	311	303	303	303
309	304	306	307	308	308		310	310	308	309	309
200	202	202	000	000	200		010		000	000	0000

Appendix IV - Page 15 of 26 Report No. 64961, Rev. 1

-

13	14	15	16	11	18	19	20	21	22	23	24	25
314	316	316	316	315	318	318	305	318	317	318	313	316
312	317	314	320	320	311	307	315	317	315	316	313	306
316	316	313	316	314	313	315	314	313	307	314	311	311
303	309	311	304	304	315	314	313	312	312	305	305	305
312	312	304	311	314	313	314	312	313	315	313	313	314
310	311	303	306	312	316	306	304	305	305	304	304	312
310	310	308	310	303	304	305	312	312	312	310	310	310
315	313	303	313	313	313	314	313	312	312	310	310	311
313	314	314	316	315	314	315	312	312	312	311	312	303
313	312	310	305	313	313	315	314	315	314	313	313	313
310	311	311	311	308	314	312	307	311	310	305	305	312
311	312	313	311	312	312	312	313	314	312	310	313	314
310	312	312	311	312	312	314	313	312	311	312	313	311
312	312	311	310	312	310	312	310	312	310	312	314	310
310	311	313	312	312	310	312	314	311	312	311	312	312
310	310	311	312	313	312	312	309	311	314	310	311	314
312	310	311	312	310	310	310	310	311	312	312	312	312
311	311	312	311	310	313	311	311	310	312	313	311	310
310	310	312	310	312	313	313	313	310	312	313	311	313
309	311	312	312	310	314	313	313	309	311	310	312	312
310	311	312	312	312	310	309	311	311	312	312	311	312
310	310	311	310	311	310	309	310	309	310	312	312	312
909	309	309	309	309	310	309	309	309	309	310	309	309
312	310	310	309	309	309	311	310	312	310	310	310	310
309	309	309	310	310	310	310	309	310	310	310	310	310
608	309	309	309	309	309	309	309	309	309	311	309	310
308	308	307	308	308	308	308	309	309	309	309	309	309
312	304	312	304	312	312	313	310	305	311	311	311	311
303	305	312	310	310	305	305	305	310	305	305	305	306
309	309	309	312	309	309	310	311	304	308	304	306	303
305	312	310	310	305	305	305	305	310	305	306	311	312

Appendix IV - Page 16 of 26 Report No. 64961, Rev. 1

27	28	29	30	31	32	33	34	35	36	37	38
316	313	312	304	306	312	304	312	312	314	314	314
318	317	302	303	312	312	314	312	312	311	311	312
313	316	304	310	312	311	311	311	312	312	312	313
311	306	312	311	312	313	312	312	312	313	312	311
310	312	310	310	308	308	312	312	313	310	305	312
314	313	311	313	313	313	313	311	311	313	312	311
303	310	314	312	314	312	305	305	304	303	313	305
311	303	310	311	312	314	312	312	314	314	314	314
315	306	308	305	304	303	314	314	314	309	302	304
312	312	311	303	314	308	305	308	314	309	311	311
312	312	308	314	305	309	310	303	314	311	311	311
313	313	306	314	312	313	313	312	312	312	312	313
313	313	313	313	312	313	312	312	312	313	312	312
313	310	311	314	313	312	312	312	312	312	311	311
312	312	311	312	312	312	313	312	312	313	311	310
312	312	312	312	311	312	312	312	312	312	312	312
310	310	314	312	312	312	312	310	311	314	311	312
312	310	312	312	311	312	312	312	310	312	312	312
312	310	312	312	312	312	312	310	311	311	312	312
312	309	312	312	312	312	313	312	312	311	312	312
312	313	311	312	312	312	312	312	312	311	312	312
309	309	310	310	305	305	305	306	306	307	307	307
310	310	312	312	306	305	304	306	308	309	309	312
310	310	312	306	306	306	306	307	307	312	312	314
310	309	305	305	306	305	306	306	305	306	306	306
310	309	305	305	306	305	306	306	305	306	306	307
309	309	305	304	306	307	306	307	306	307	309	309
306	305	310	310	306	306	306	310	307	307	312	306
311	312	312	312	312	313	312	313	311	312	311	311
312	311	312	312	312	311	312	312	311	312	311	311
312	312	310	310	309	309	309	309	310	309	310	310

		1	INSI LAD						
N	43	44	45	46	47	48	49	20	51
4	314	314	314	308	308	308	312	314	314
N	305	312	312	312	307	305	312	306	308
3	307	312	313	313	313	313	313	314	305
8	311	312	312	314	306	312	314	314	313
2	307	305	312	313	312	313	312	312	314
2	313	312	312	313	314	314	313	304	313
9	308	307	306	312	306	306	307	312	314
8	308	309	310	314	306	309	314	314	315
2	311	311	307	312	312	305	312	311	306
4	314	306	314	314	311	310	304	303	302
2	312	313	310	314	314	314	302	295	303
2	313	312	312	312	312	312	312	312	312
N	313	312	312	312	312	312	312	312	312
2	313	312	312	312	312	312	312	312	312
2	312	313	312	312	312	312	312	312	312
2	312	312	313	312	312	312	312	312	312
N	312	312	312	312	312	312	312	312	312
2	312	312	312	312	312	312	312	312	312
2	313	312	312	312	312	312	312	312	312
2	313	312	312	312	312	312	312	312	312
2	312	312	312	312	312	312	312	312	312
9	306	306	307	307	307	307	307	309	308
2	312	312	312	312	312	312	312	312	312
0	310	309	309	309	312	309	312	312	312
6	309	306	306	310	311	311	312	312	312
9	310	311	311	311	312	312	312	312	312
1	307	307	309	310	307	307	309	310	309
1	307	307	307	308	309	307	307	309	309
-	308	308	308	308	311	309	309	309	310
-	312	312	311	312	312	312	311	311	311
0	010	000	040	244	CRC	040	010	040	312

Appendix IV - Page 18 of 26 Report No. 64961, Rev. 1

63			B							
	62	61	60	59	2.0	58	57 58	56 57 58	55 56 57 58	54 55 56 57 58
309	312	308	312	305		312	308 312 205 205	306 308 312 205 305 305	307 306 308 312 205 205 205 205	308 307 306 308 312 205 205 205 205 205
305	309	308	305	306		305	309 305	312 309 305	314 312 309 305	312 314 312 309 305
302	305	309	307	307		306	315 306	313 315 306	313 313 315 306	313 313 313 313 315 306
308	309	308	309	307		307	306 307	312 306 307	312 312 306 307	306 312 312 306 307
308	304	305	304	304		303	304 303	314 304 303	314 314 304 303	314 314 314 304 303
307	308	307	308	307		307	307 307	314 307 307	314 314 307 307	309 314 314 307 307
309	308	307	307	307		308	307 308	314 307 308	310 314 307 308	308 310 314 307 308
309	303	307	309	305		302	306 302	304 306 302	308 304 306 302	311 308 304 306 302
308	307	306	307	307		312	307 312	302 307 312	303 302 307 312	304 303 302 307 312
312 3	312	306	307	307		304	305 304	300 305 304	308 300 305 304	305 308 300 305 304
312 3	312	311	311	312		312	312 312	311 312 312	312 311 312 312	311 312 311 312 312
312 3	312	312	312	312		312	312 312	312 312 312	312 312 312 312	312 312 312 312 312 312
312 3	311	311	312	312		312	312 312	311 312 312	310 311 312 312	312 310 311 312 312
312 3	312	312	312	312		313	313 313	312 313 313	312 312 313 313	312 312 312 313 313
311 3	311	312	312	313		313	312 313	312 312 313	311 312 312 313	312 311 312 312 313
313 3	312	311	312	312		313	312 313	312 312 313	312 312 312 313	312 312 312 312 313
312 3	312	312	311	312		312	312 312	312 312 312	312 312 312 312	312 312 312 312 312 312
312 3	311	311	311	311		312	312 312	312 312 312	312 312 312 312	312 312 312 312 312 312
312 3	312	312	312	312		312	312 312	312 312 312	312 312 312 312	312 312 312 312 312
312 3	312	311	310	312		311	310 311	312 310 311	312 312 310 311	312 312 312 312 310 311
306	307	305	307	309		308	309 308	307 309 308	307 307 309 308	307 307 307 309 308
309 3	305	306	306	305		304	304 304	309 304 304	309 309 304 304	309 309 309 304 304
305 3	305	305	307	307		307	305 307	309 305 307	310 309 305 307	310 310 309 305 307
307 3	306	305	306	305		306	307 306	312 307 306	312 312 307 306	312 312 312 312 307 306
305 3	304	304	306	304		305	307 305	309 307 305	309 309 307 305	309 309 309 307 305
305 3	303	304	305	306		305	304 305	310 304 305	310 310 304 305	310 310 310 304 305
306	305	305	305	305		306	305 306	309 305 306	309 309 305 305 306	309 309 309 305 306
307 3	306	305	306	306		305	305 305	310 305 305	309 310 305 305	309 309 310 305 305
304 3	304	308	306	305		305	306 305	312 306 305	311 312 306 305	311 311 312 306 305
305 3	305	306	306	306		304	310 304	312 310 304	312 312 310 304	312 312 312 310 304

GKID	11	310	310	306	305	307	305	309	312	308	315	313	313	312	313	313	311	312	312	311	312	312	305	308	309	305	305	306	306	305	305	306
N	92	310	309	306	306	307	308	309	309	309	314	313	311	312	312	311	312	313	311	311	313	311	308	309	306	303	308	304	305	305	306	305
	75	310	310	309	304	306	309	306	306	304	312	314	312	312	313	313	312	311	312	313	313	312	309	309	305	305	308	304	305	306	308	306
	74	310	308	309	297	307	309	307	305	312	310	312	312	311	312	312	311	312	312	312	312	313	307	309	305	304	305	306	306	305	307	307
71 61	73	309	306	306	305	306	305	309	305	304	312	309	312	312	312	312	312	312	312	312	312	312	304	309	305	304	304	305	305	306	305	308
cana	72	309	309	309	308	307	309	309	311	305	310	312	312	312	312	311	311	313	313	313	312	312	306	309	306	305	305	309	306	306	305	304
to Corsic RST LAB	71	309	306	310	306	307	305	308	312	308	312	311	312	312	312	313	312	312	312	312	310	312	304	309	307	306	309	307	308	305	307	305
Conway	20	309	309	309	310	305	309	307	305	309	307	309	312	312	311	312	311	311	312	312	312	311	304	304	305	307	306	307	307	306	306	305
, and the second s	69	310	309	304	306	309	309	307	310	312	309	307	312	312	312	312	313	313	313	313	312	312	306	305	307	303	307	309	306	305	305	305
	68	309	309	305	304	310	303	306	310	307	312	301	312	312	312	312	313	312	312	312	312	312	306	306	305	304	305	306	305	304	306	306
	67	310	308	305	306	307	312	309	309	312	313	307	312	312	312	312	313	313	312	311	311	312	307	306	307	305	309	305	306	303	308	304
	99	309	310	306	306	309	309	306	309	312	312	312	312	312	312	312	312	312	311	312	312	312	306	308	303	306	308	303	307	304	308	305
	65	307	307	304	306	307	309	307	308	307	306	307	312	312	312	312	312	312	311	312	312	312	306	309	305	307	308	305	306	305	307	306

Appendix IV - Page 20 of 26 Report No. 64961, Rev. 1

		2							
81	82	83	84	85	86	87	88	68	90
311	312	312	313	310	312	310	310	311	310
307	306	306	306	310	310	310	310	310	311
305	311	306	307	310	311	309	309	309	306
306	306	306	305	309	309	310	309	309	309
309	306	308	311	311	311	311	312	312	311
308	312	309	310	309	309	309	307	309	309
312	310	309	310	310	310	309	309	309	309
312	309	310	310	305	310	308	308	311	311
310	309	308	310	309	313	313	312	312	312
313	314	312	311	312	312	313	312	312	314
313	308	314	308	309	311	308	311	311	311
312	312	311	312	312	312	312	311	311	312
312	312	311	312	311	312	312	312	311	312
312	312	311	311	312	312	310	310	312	312
313	312	311	312	313	312	313	312	312	312
312	312	313	312	312	311	312	311	312	312
312	312	312	311	312	313	314	311	312	312
312	312	312	313	312	313	312	312	313	312
312	312	312	312	311	311	312	312	313	312
312	312	312	312	311	312	312	312	313	312
312	312	312	313	307	311	307	304	304	307
310	309	310	309	313	312	312	311	310	308
309	309	307	307	311	311	310	310	310	307
309	304	307	307	311	310	310	310	311	311
305	307	307	306	308	307	310	307	308	310
307	307	308	307	311	311	310	308	307	310
305	305	306	307	310	310	310	312	310	311
307	307	306	307	306	310	311	310	311	311
305	305	303	303	304	307	307	305	307	307
304	306	305	305	304	305	307	305	307	305
306	305	306	307	305	304	307	308	304	304

Appendix IV - Page 21 of 26 Report No. 64961, Rev. 1

	102 103	312 312	310 310	309 309	309 309	310 310	309 309	310 309	307 309	311 311	309 311	307 309	312 312	311 312	312 312	312 312	313 312	312 312	312 313	312 313	312 313	311 311	311 310	311 311	311 312	310 311	309 309	311 311	311 312	306 305	305 308	
	101	311	310	310	310	309	309	310	309	311	314	309	312	311	314	313	312	312	312	312	312	307	311	312	312	307	309	310	311	305	306	NUC
	100	312	309	309	311	310	309	309	309	311	313	309	312	312	312	313	312	313	312	312	312	305	310	311	311	308	310	310	311	307	306	200
	66	310	309	309	309	309	309	309	309	313	312	309	310	311	314	311	312	312	313	313	313	307	311	311	311	307	312	310	311	308	305	SOF
cana	98	311	309	309	309	309	309	310	309	312	312	312	312	312	310	312	312	312	312	312	312	305	310	311	311	307	311	310	311	308	306	300
/ to Corsi RST LAB	26	309	309	309	309	309	309	309	303	312	308	311	312	314	312	313	312	312	312	311	311	305	311	310	308	307	312	310	311	308	308	SOC
Conway	96	310	309	309	309	309	309	309	303	312	309	309	312	312	314	313	312	312	311	312	312	305	311	312	310	311	311	311	312	305	306	DOC
	95	310	309	310	309	311	309	309	309	312	309	309	312	312	312	312	313	313	313	312	312	305	311	311	311	312	309	310	311	305	306	200
	94	311	309	310	310	310	307	309	309	312	314	309	313	313	312	312	312	311	312	312	312	307	311	310	310	312	310	310	311	305	307	SAE
	66	310	309	309	310	310	308	307	312	309	312	311	312	312	312	312	312	312	312	312	312	307	311	311	308	312	311	310	312	305	305	- YUC
	92	310	310	309	309	311	308	309	312	309	314	312	311	311	312	312	310	310	311	312	312	306	310	308	311	308	310	311	311	307	307	NOC.
	91	311	310	306	309	311	307	310	311	312	309	312	12	312	312	312	312	312	313	313	311	306	310	308	311	310	311	310	310	305	305	PUC.

Report

					H	RST LAB						
104	105	106	107	108	109	110	111	112	113	114	115	116
310	310	309	311	310	310	310	310	311	311	312	309	310
311	310	310	309	310	310	312	310	310	309	309	311	306
309	310	309	309	310	311	309	309	309	312	309	310	306
310	309	309	309	310	311	309	309	309	309	311	308	308
309	310	310	310	311	310	310	309	309	311	309	308	307
309	309	309	309	310	310	310	310	310	309	310	310	306
309	308	309	309	307	309	311	311	310	312	310	310	306
309	309	308	310	309	310	310	310	309	311	311	309	306
312	308	308	308	302	308	310	310	312	312	313	312	306
309	309	309	309	309	312	312	310	312	311	309	311	31
309	309	312	309	309	307	307	307	308	310	307	309	306
312	312	312	312	312	313	312	312	311	312	312	312	313
312	312	312	312	312	314	312	312	312	312	312	312	31
312	312	312	312	312	312	312	312	311	312	312	312	31
312	312	312	312	312	312	312	312	312	312	312	312	31
312	312	312	312	312	312	313	313	312	312	312	312	313
313	313	312	312	312	312	313	314	312	311	312	313	31
313	312	312	312	312	313	312	314	312	311	311	311	314
312	314	312	312	313	314	312	312	312	311	311	311	314
314	313	312	312	312	312	311	312	312	314	313	314	31
311	311	308	307	307	308	312	305	305	314	307	313	31
312	306	308	312	311	312	313	314	314	300	303	300	30:
311	310	311	310	311	310	308	308	309	312	312	306	30
311	311	311	311	310	311	311	310	310	307	305	305	30
311	311	311	308	311	311	311	310	311	307	305	305	31(
309	311	311	311	310	311	311	311	310	310	309	310	300
310	310	311	311	311	311	311	312	311	309	305	305	30
312	312	312	312	312	312	311	312	311	312	311	311	31
305	306	305	306	307	306	307	306	306	307	305	305	307
307	305	305	305	305	308	305	305	305	303	306	305	302
305	305	305	305	306	305	307	306	306	304	302	305	305

Appendix IV - Page 24 of 26 Report No. 64961, Rev. 1

				H	IRST LAB						
131	132	133	134	135	136	137	138	139	140	141	142
309	309	311	307	309	307	309	309	309	309	310	309
309	309	309	309	309	309	309	308	307	309	308	309
309	309	307	306	307	306	308	307	307	307	303	306
311	309	307	307	307	307	308	307	307	307	306	305
309	307	307	306	309	309	308	308	309	309	306	306
308	309	309	310	311	306	308	309	309	308	304	305
306	309	308	306	309	307	309	308	309	310	309	308
306	305	311	311	307	307	307	309	309	309	309	310
312	312	309	312	312	312	312	311	311	311	311	309
306	307	307	306	307	307	306	307	307	311	312	314
307	306	307	306	306	306	306	305	307	307	311	310
311	312	312	311	312	312	312	312	312	312	312	312
312	314	312	312	313	312	312	312	314	313	312	312
312	313	312	313	314	312	312	312	314	312	313	312
312	312	313	312	314	313	312	313	314	312	312	312
312	313	312	313	314	312	313	312	314	312	311	312
312	312	312	313	312	312	313	312	313	312	312	312
312	312	312	311	312	312	312	312	312	312	312	312
312	312	312	312	311	312	312	312	312	312	312	311
312	312	312	312	312	312	312	312	312	312	312	312
300	303	298	300	300	303	300	300	300	298	308	315
310	310	310	312	306	306	310	310	310	310	313	305
304	304	304	306	306	307	306	307	306	307	316	315
307	304	307	307	306	307	303	305	305	314	315	315
307	307	306	307	306	307	306	309	308	307	315	314
308	307	307	308	307	306	306	306	306	314	314	314
305	303	302	302	302	302	302	304	304	305	314	314
304	303	305	304	303	304	303	304	303	302	304	312
305	302	304	303	304	304	302	305	302	302	305	312
301	300	302	304	301	302	304	312	304	312	312	312
313	211	245	245	215	24.4	300	214	308	305	310	310

Appendix IV - Page 25 of 26 Report No. 64961, Rev. 1 Conway_Corsicana Odo 81627.98 Dig 12 Conway to Corsicana HURST LAB

147	309	309	309	305	304	303	308	309	311	312	309	313	314	313	312	312	313	313	313	313	305	305	316	316	314	314	314	314	312	310	310
146	309	309	309	304	303	303	306	310	311	312	308	312	313	313	313	312	312	312	314	312	309	303	315	313	314	314	314	312	312	312	310
145	309	307	306	304	304	304	307	311	305	313	306	312	312	312	312	312	312	312	312	313	314	305	304	312	313	314	314	312	312	310	310
144	309	309	309	303	304	304	304	309	311	312	304	312	313	312	312	312	312	312	312	312	309	298	305	315	313	314	313	312	312	312	310
143	309	309	309	306	305	303	305	310	311	312	310	312	312	312	312	312	314	314	312	312	305	308	316	315	313	314	313	312	312	312	311

2" GRID

Appendix IV - Page 26 of 26 Report No. 64961, Rev. 1

12

Appendix V

The photographs display an overall view of the area along the ERW seam on the intact 19' 10" long section of the pipe, and a closer view of the area where the ERW seam test specimens were removed from.

The photographs display an overall view of the area opposite the ERW seam on the intact 19' 10" long section of the pipe, showing where the longitudinal and transverse base metal test specimens were removed from. The insert photograph shows the location of the base metal CVN impact test specimens.

The photograph displays the test specimens that were removed from the intact 19' 10" long section of pipe, after machining and prior to testing. The various test specimens were machined and tested in accordance with ASTM A370-12a and the applicable sections of each edition of API 5L.

The photographs display the O.D. and I.D. surface, respectively, at the locations where the cross-sections were removed through the fractured area of the ERW seam and metallographically prepared for microstructural evaluation.